Computational analysis of quantitative characteristics of some residual properties of solvable Baumslag--Solitar groups
Modelirovanie i analiz informacionnyh sistem, Tome 28 (2021) no. 2, pp. 136-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G_{k}$ be defined as $G_{k} = \langle a, b; a^{-1}ba = b^{k} \rangle$, where $k \ne 0$. It is known that, if $p$ is some prime number, then $G_{k}$ is residually a finite $p$-group if and only if $p \mid k - 1$. It is also known that, if $p$ and $q$ are primes not dividing $k - 1$, $p q$, and $\pi = \{p, q\}$, then $G_{k}$ is residually a finite $\pi$-group if and only if $(k, q) = 1$, $p \mid q - 1$, and the order of $k$ in the multiplicative group of the field $\mathbb{Z}_{q}$ is a $p$-number. This paper examines the question of the number of two-element sets of prime numbers that satisfy the conditions of the last criterion. More precisely, let $f_{k}(x)$ be the number of sets $\{p, q\}$ such that $p q$, $p \nmid k - 1$, $q \nmid k - 1$, $(k, q) = 1$, $p \mid q - 1$, the order of $k$ modulo $q$ is a $p$-number, and $p$, $q$ are chosen among the first $x$ primes. We state that, if $2 \leq |k| \leq 10000$ and $1 \leq x \leq 50000$, then, for almost all considered $k$, the function $f_{k}(x)$ can be approximated quite accurately by the function $\alpha_{k}x^{0.85}$, where the coefficient $\alpha_{k}$ is different for each $k$ and $\{\alpha_{k} \mid 2 \leq |k| \leq 10000\} \subseteq (0.28; 0.31]$. We also investigate the dependence of the value $f_{k}(50000)$ on $k$ and propose an effective algorithm for checking a two-element set of prime numbers for compliance with the conditions of the last criterion. The results obtained may have applications in the theory of computational complexity and algebraic cryptography.
Keywords: Baumslag–Solitar groups, residual $\pi$-finiteness, function approximation, analysis of algorithms.
@article{MAIS_2021_28_2_a1,
     author = {E. A. Tumanova},
     title = {Computational analysis of quantitative characteristics of some residual properties of solvable {Baumslag--Solitar} groups},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {136--145},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2021_28_2_a1/}
}
TY  - JOUR
AU  - E. A. Tumanova
TI  - Computational analysis of quantitative characteristics of some residual properties of solvable Baumslag--Solitar groups
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2021
SP  - 136
EP  - 145
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2021_28_2_a1/
LA  - ru
ID  - MAIS_2021_28_2_a1
ER  - 
%0 Journal Article
%A E. A. Tumanova
%T Computational analysis of quantitative characteristics of some residual properties of solvable Baumslag--Solitar groups
%J Modelirovanie i analiz informacionnyh sistem
%D 2021
%P 136-145
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2021_28_2_a1/
%G ru
%F MAIS_2021_28_2_a1
E. A. Tumanova. Computational analysis of quantitative characteristics of some residual properties of solvable Baumslag--Solitar groups. Modelirovanie i analiz informacionnyh sistem, Tome 28 (2021) no. 2, pp. 136-145. http://geodesic.mathdoc.fr/item/MAIS_2021_28_2_a1/

[1] D. I. Moldavanski, N. Y. Sibyakova, “On the finite images of some one-relator groups”, Proc. Amer. Math. Soc., 123 (1995), 2017–2020 | DOI | MR | Zbl

[2] G. Baumslag, D. Solitar, “Some two-generator one-relator non-hopfian groups”, Bull. Amer. Math. Soc., 68 (1962), 199–201 | DOI | MR | Zbl

[3] S. Meskin, “Nonresidually finite one-relator groups”, Trans. Amer. Math. Soc., 164 (1972), 105–114 | DOI | MR | Zbl

[4] D. I. Moldavanskii, “The residual $p$-finiteness of hnn-extensions”, Bull. Ivanovo State Univ., 2000, no. 3, 129–140

[5] O. A. Ivanova, D. I. Moldavanskii, “The residual $\pi$-finiteness of some one-relator groups”, Proc. Ivanovo State Univ. Mathematics, 6 (2008), 51–58 | MR

[6] I. A. Pankratova, Number-theoretic cryptography methods, Tomsk State Univ., 2009