Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2021_28_1_a1, author = {A. V. Smirnov}, title = {NP-completeness of the minimum spanning tree problem of a multiple graph of multiplicity $k \geqslant 3$}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {22--37}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2021_28_1_a1/} }
TY - JOUR AU - A. V. Smirnov TI - NP-completeness of the minimum spanning tree problem of a multiple graph of multiplicity $k \geqslant 3$ JO - Modelirovanie i analiz informacionnyh sistem PY - 2021 SP - 22 EP - 37 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2021_28_1_a1/ LA - ru ID - MAIS_2021_28_1_a1 ER -
%0 Journal Article %A A. V. Smirnov %T NP-completeness of the minimum spanning tree problem of a multiple graph of multiplicity $k \geqslant 3$ %J Modelirovanie i analiz informacionnyh sistem %D 2021 %P 22-37 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2021_28_1_a1/ %G ru %F MAIS_2021_28_1_a1
A. V. Smirnov. NP-completeness of the minimum spanning tree problem of a multiple graph of multiplicity $k \geqslant 3$. Modelirovanie i analiz informacionnyh sistem, Tome 28 (2021) no. 1, pp. 22-37. http://geodesic.mathdoc.fr/item/MAIS_2021_28_1_a1/
[1] A. V. Smirnov, “The shortest path problem for a multiple graph”, Automatic Control and Computer Sciences, 52:7 (2018), 625–633 | DOI | MR
[2] A. V. Smirnov, “The spanning tree of a divisible multiple graph”, Automatic Control and Computer Sciences, 52:7 (2018), 871–879 | DOI | MR
[3] J. B. Kruskal, “On the shortest spanning subtree of a graph and the traveling salesman problem”, Proceedings of the American Mathematical Society, 7:1 (1956), 48–50 | DOI | MR | Zbl
[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to algorithms, 3rd, The MIT Press, McGraw-Hill Book Company, 2009 | MR
[5] C. Berge, Graphs and hypergraphs, North-Holland Publishing Company, 1973 | MR | Zbl
[6] A. Basu, R. W. Blanning, “Metagraphs in workflow support systems”, Decision Support Systems, 25:3 (1999), 199–208 | DOI
[7] A. Basu, R. W. Blanning, Metagraphs and their applications, Integrated Series in Information Systems, 15, Springer US, 2007 | Zbl
[8] V. S. Rublev, A. V. Smirnov, “Flows in multiple networks”, Yaroslavsky Pedagogichesky Vestnik, 3:2 (2011), 60–68
[9] A. V. Smirnov, “The problem of finding the maximum multiple flow in the divisible network and its special cases”, Automatic Control and Computer Sciences, 50:7 (2016), 527–535 | DOI
[10] L. R. Ford, D. R. Fulkerson, Flows in networks, Princeton University Press, 1962 | MR | Zbl
[11] V. S. Roublev, A. V. Smirnov, “The problem of integer-valued balancing of a three-dimensional matrix and algorithms of its solution”, Modeling and Analysis of Information Systems, 17:2 (2010), 72–98 | MR
[12] A. V. Smirnov, “Network model for the problem of integer balancing of a four-dimensional matrix”, Automatic Control and Computer Sciences, 51:7 (2017), 558–566 | DOI
[13] M. R. Garey, D. S. Johnson, Computers and intractability: a guide to the theory of np-completeness, W. H. Freeman and Company, 1979 | MR | Zbl
[14] R. Karp, Complexity of computer computations, eds. R. E. Miller, J. W. Thatcher \title Reducibility among combinatorial problems, Plenum, 1972, 85–103 | DOI | MR | Zbl