Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2021_28_1_a0, author = {A. V. Korostil and A. V. Nikolaev}, title = {Backtracking algorithms for constructing the {Hamiltonian} decomposition of a $4$-regular multigraph}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {6--21}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2021_28_1_a0/} }
TY - JOUR AU - A. V. Korostil AU - A. V. Nikolaev TI - Backtracking algorithms for constructing the Hamiltonian decomposition of a $4$-regular multigraph JO - Modelirovanie i analiz informacionnyh sistem PY - 2021 SP - 6 EP - 21 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2021_28_1_a0/ LA - ru ID - MAIS_2021_28_1_a0 ER -
%0 Journal Article %A A. V. Korostil %A A. V. Nikolaev %T Backtracking algorithms for constructing the Hamiltonian decomposition of a $4$-regular multigraph %J Modelirovanie i analiz informacionnyh sistem %D 2021 %P 6-21 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2021_28_1_a0/ %G ru %F MAIS_2021_28_1_a0
A. V. Korostil; A. V. Nikolaev. Backtracking algorithms for constructing the Hamiltonian decomposition of a $4$-regular multigraph. Modelirovanie i analiz informacionnyh sistem, Tome 28 (2021) no. 1, pp. 6-21. http://geodesic.mathdoc.fr/item/MAIS_2021_28_1_a0/
[1] J. Krarup, “The peripatetic salesman and some related unsolved problems”, Combinatorial programming: methods and applications, NATO Advanced Study Institutes Series, 19, Springer Netherlands, 1995, 173–178 | DOI | MR
[2] M. M. Bae, B. Bose, “Edge disjoint hamiltonian cycles in $k$-ary $n$-cubes and hypercubes”, IEEE Transactions on Computers, 52:10 (2003), 1271–1284 | DOI
[3] R. F. Bailey, “Error-correcting codes from permutation groups”, Discrete Mathematics, 309:13 (2009), 4253–4265 | DOI | MR | Zbl
[4] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, M. Y. Zhu, “Tools for privacy preserving distributed data mining”, SIGKDD Explor. Newsl., 4:2 (2002), 28–34 | DOI
[5] R. W. Hung, “Embedding two edge-disjoint hamiltonian cycles into locally twisted cubes”, Theoretical Computer Science, 412:35 (2011), 4747–4753 | DOI | MR | Zbl
[6] R. Glebov, Z. Luria, B. Sudakov, “The number of hamiltonian decompositions of regular graphs”, Israel Journal of Mathematics, 222:1 (2017), 91–108 | DOI | MR | Zbl
[7] G. Dantzig, R. Fulkerson, S. Johnson, “Solution of a large-scale traveling-salesman problem”, Journal of the Operations Research Society of America, 2:4 (1954), 393–410 | DOI | MR | Zbl
[8] D. L. Applegate, R. E. Bixby, V. Chvatál, W. J. Cook, The traveling salesman problem: a computational study, Princeton University Press, 2006 | MR | Zbl
[9] N. E. Aguilera, R. D. Katz, P. B. Tolomei, “Vertex adjacencies in the set covering polyhedron”, Discrete Applied Mathematics, 218 (2017), 40–56 | DOI | MR | Zbl
[10] M. L. Balinski, “Signature methods for the assignment problem”, Operations Research, 33:3 (1985), 527–536 | DOI | MR | Zbl
[11] C. R. Chegireddy, H. W. Hamacher, “Algorithms for finding $k$-best perfect matchings”, Discrete Applied Mathematics, 18:2 (1987), 155–165 | DOI | MR | Zbl
[12] E. F. Combarro, P. Miranda, “Adjacency on the order polytope with applications to the theory of fuzzy measures”, Fuzzy Sets and Systems, 161:5 (2010), 619–641 | DOI | MR | Zbl
[13] H. N. Gabow, “Two algorithms for generating weighted spanning trees in order”, SIAM Journal on Computing, 6:1 (1977), 139–150 | DOI | MR | Zbl
[14] V. A. Bondarenko, “Nonpolynomial lower bounds for the complexity of the traveling salesman problem in a class of algorithms”, Automation and Remote Control, 44:9 (1983), 1137–1142 | MR | Zbl
[15] V. Bondarenko, A. Nikolaev, “On graphs of the cone decompositions for the min-cut and max-cut problems”, International Journal of Mathematics and Mathematical Sciences, 2016 (2016), 7863650 | DOI | MR | Zbl
[16] M. Grötschel, M. Padberg, “Polyhedral theory”, The traveling salesman problem: a guided tour of combinatorial optimization, John Wiley, Chichester, 1985, 251–305 | MR
[17] C. H. Papadimitriou, “The adjacency relation on the traveling salesman polytope is np-complete”, Mathematical Programming, 14:1 (1978), 312–324 | DOI | MR | Zbl
[18] V. A. Bondarenko, A. V. Nikolaev, “On the skeleton of the polytope of pyramidal tours”, Journal of Applied and Industrial Mathematics, 12:1 (2018), 9–18 | DOI | MR | Zbl
[19] A. Nikolaev, “On vertex adjacencies in the polytope of pyramidal tours with step-backs”, Mathematical optimization theory and operations research, Motor 2019, LNCS, 11548, Springer, 2019, 247–263 | DOI | Zbl
[20] T. S. Arthanari, “On pedigree polytopes and hamiltonian cycles”, Discrete Mathematics, 306:14 (2006), 1474–1492 | DOI | MR | Zbl
[21] T. S. Arthanari, “Study of the pedigree polytope and a sufficiency condition for nonadjacency in the tour polytope”, Discrete Optimization, 10:3 (2013), 224–232 | DOI | MR | Zbl
[22] M. R. Rao, “Adjacency of the traveling salesman tours and $0 - 1$ vertices”, SIAM Journal on Applied Mathematics, 30:2 (1976), 191–198 | DOI | MR | Zbl
[23] B. Péroche, “Np-completeness of some problems of partitioning and covering in graphs”, Discrete Applied Mathematics, 8:2 (1984), 195–208 | DOI | MR | Zbl
[24] A. Kozlova, A. Nikolaev, “Simulated annealing approach to verify vertex adjacencies in the traveling salesperson polytope”, Mathematical optimization theory and operations research, Motor 2019, LNCS, 11548, Springer, 2019, 374–389 | DOI | Zbl
[25] A. Nikolaev, A. Kozlova, “Hamiltonian decomposition and verifying vertex adjacency in 1-skeleton of the traveling salesperson polytope by variable neighborhood search”, Journal of Combinatorial Optimization, 2020 | DOI | MR
[26] S. S. Skiena, The algorithm design manual, Springer, 2008 | DOI | MR | Zbl
[27] A. V. Korostil, A. V. Nikolaev, “backtracking algorithm to construct the hamiltonian decomposition of a 4-regular multigraph”, Notes on Computer Science and Mathematics, 12, P.G. Demidov Yaroslavl State University, 2020, 91–97 | MR
[28] D. E. Knuth, The art of computer programming, v. 2, Seminumerical algorithms, 3rd ed., Addison-Wesley Longman Publishing Co., Inc., USA, 1997 | DOI | MR
[29] J. H. Kim, N. C. Wormald, “Random matchings which induce hamilton cycles and hamiltonian decompositions of random regular graphs”, Journal of Combinatorial Theory, Series B, 81:1 (2001), 20–44 | DOI | MR | Zbl