Features of the algorithmic implementation of difference analogues of the logistic equation with delay
Modelirovanie i analiz informacionnyh sistem, Tome 27 (2020) no. 3, pp. 344-355.

Voir la notice de l'article provenant de la source Math-Net.Ru

The logistic equation with delay or Hutchinson's equation is one of the fundamental equations of population dynamics and is widely used in problems of mathematical ecology. We consider a family of mappings built for this equation based on central separated differences. Such difference schemes are usually used in the numerical simulation of this problem. The presented mappings themselves can serve as models of population dynamics; therefore, their study is of considerable interest. We compare the properties of the trajectories of these mappings and the original equation with delay. It is shown that the behavior of the solutions of the mappings constructed on the basis of the central separated differences does not preserve, even with a sufficiently small value of the time step, the basic dynamic properties of the logistic equation with delay. In particular, this map does not have a stable invariant curve bifurcating under the oscillatory loss of stability of a nonzero equilibrium state. This curve corresponds in such mappings to the stable limit cycle of the original continuous equation. Thus, it is shown that such a difference scheme cannot be used for numerical modeling of the logistic equation with delay.
Keywords: logistic equation with delay, mapping
Mots-clés : bifurcation.
@article{MAIS_2020_27_3_a4,
     author = {S. D. Glyzin and S. A. Kaschenko and A. O. Tolbey},
     title = {Features of the algorithmic implementation of difference analogues of the logistic equation with delay},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {344--355},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2020_27_3_a4/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - S. A. Kaschenko
AU  - A. O. Tolbey
TI  - Features of the algorithmic implementation of difference analogues of the logistic equation with delay
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2020
SP  - 344
EP  - 355
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2020_27_3_a4/
LA  - ru
ID  - MAIS_2020_27_3_a4
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A S. A. Kaschenko
%A A. O. Tolbey
%T Features of the algorithmic implementation of difference analogues of the logistic equation with delay
%J Modelirovanie i analiz informacionnyh sistem
%D 2020
%P 344-355
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2020_27_3_a4/
%G ru
%F MAIS_2020_27_3_a4
S. D. Glyzin; S. A. Kaschenko; A. O. Tolbey. Features of the algorithmic implementation of difference analogues of the logistic equation with delay. Modelirovanie i analiz informacionnyh sistem, Tome 27 (2020) no. 3, pp. 344-355. http://geodesic.mathdoc.fr/item/MAIS_2020_27_3_a4/

[1] E. M. Wright, “A non-linear difference-differential equation”, Journal für die reine und angewandte Mathematik, 194 (1955), 66–87 | MR | Zbl

[2] S. Kakutani, L. Markus, “On the non-linear difference-differential equation $y'(t)=(a-by(t-\tau))y(t)$”, Contributions to the Theory of Nonlinear Oscillations, 4 (1958), 1–18 | MR

[3] G. S. Jones, “The existence of periodic solutions of $f'(x)=-\alpha f(x-1)\{1+f(x)\}$”, Journal of Mathematical Analysis and Applications, 5 (1962), 435–450 | DOI | MR | Zbl

[4] S. Kashchenko, “Asymptotics of the Solutions of the Generalized Hutchinson Equation”, Automatic Control and Computer Sciences, 47:7 (2013), 470–494 | DOI

[5] S. A. Kashchenko, “Periodic Solutions of Nonlinear Equations Generalizing Logistic Equations with Delay”, Math. Notes, 102 (2017), 181–192 | DOI | MR | Zbl

[6] S. Kashchenko, D. Loginov, “About Global Stable of Solutions of Logistic Equation with Delay”, Journal of Physics: Conference Series, 937:1 (2017), 012–019 | MR

[7] J. K. Hale, Theory of functional differential equations, Springer Verlag, New York, 1977 | MR | Zbl

[8] P. Hartman, Ordinary Differential Equations, Wiley, New York, 1964 | MR | Zbl

[9] S. D. Glyzin, S. A. Kashchenko, “Finite-Dimensional Mappings Describing the Dynamics of a Logistic Equation with Delay”, Doklady Mathematics, 100:1 (2019), 380–384 | DOI | MR | Zbl

[10] S. Glyzin, S. Kashchenko, “A family of finite-dimensional maps induced by a logistic equation with a delay”, Mathematical modeling, 32:3 (2020), 19–46 | MR | Zbl

[11] S. D. Glyzin, A. Y. Kolesov, N. K. Rozov, “Finite-dimensional models of diffusion chaos”, Comput. Math. and Math. Phys., 50 (2010), 816–830 | DOI | MR | Zbl

[12] J. E. Marsden, M. McCracken, The Hopf bifurcation and its applications, Appl. Math. Sci., 19, Springer-Verlag, 1976 | DOI | MR | Zbl

[13] È.È. Shnol, “On the stability of fixed points of two-dimensional mappings”, Differ. Equ., 30:7 (1994), 1156–1167 | MR | Zbl

[14] V. I. Arnold, Ordinary Differential Equations, Springer-Verlag, 1992 | MR | Zbl

[15] Y. A. Kuznetsov, Elements of Applied Bifurcationeory, Springer-Verlag, 1995 | MR

[16] Y. I. Neimark, “On some cases of periodic motions depending on parameters”, Dokl. Akad. Nauk SSSR, 129 (1959), 736–739 (In Russian) | MR | Zbl

[17] R. J. Sacker, On invariant surfaces and bifurcation of periodic solutions of ordinary differential equations, Report IMM-NYU 333, New York University, 1964 | MR

[18] R. J. Sacker, “A new approach to perturbation theory of invariant surfaces”, Comm. Pure Appl. Math., 18 (1965), 717–732 | DOI | MR | Zbl

[19] I. S. Kashchenko, S. A. Kashchenko, “Normal and quasinormal forms for systems of difference and differential-difference equations”, Communications in Nonlinear Science and Numerical Simulation, 38 (2016), 243–256 | DOI | MR | Zbl

[20] I. S. Kashchenko, S. A. Kashchenko, “Analysis of Local Dynamics of Difference and Close to Them Differential-Difference Equations”, Russ Math., 62 (2018), 24–34 | DOI | MR | Zbl