Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2020_27_3_a4, author = {S. D. Glyzin and S. A. Kaschenko and A. O. Tolbey}, title = {Features of the algorithmic implementation of difference analogues of the logistic equation with delay}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {344--355}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2020_27_3_a4/} }
TY - JOUR AU - S. D. Glyzin AU - S. A. Kaschenko AU - A. O. Tolbey TI - Features of the algorithmic implementation of difference analogues of the logistic equation with delay JO - Modelirovanie i analiz informacionnyh sistem PY - 2020 SP - 344 EP - 355 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2020_27_3_a4/ LA - ru ID - MAIS_2020_27_3_a4 ER -
%0 Journal Article %A S. D. Glyzin %A S. A. Kaschenko %A A. O. Tolbey %T Features of the algorithmic implementation of difference analogues of the logistic equation with delay %J Modelirovanie i analiz informacionnyh sistem %D 2020 %P 344-355 %V 27 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2020_27_3_a4/ %G ru %F MAIS_2020_27_3_a4
S. D. Glyzin; S. A. Kaschenko; A. O. Tolbey. Features of the algorithmic implementation of difference analogues of the logistic equation with delay. Modelirovanie i analiz informacionnyh sistem, Tome 27 (2020) no. 3, pp. 344-355. http://geodesic.mathdoc.fr/item/MAIS_2020_27_3_a4/
[1] E. M. Wright, “A non-linear difference-differential equation”, Journal für die reine und angewandte Mathematik, 194 (1955), 66–87 | MR | Zbl
[2] S. Kakutani, L. Markus, “On the non-linear difference-differential equation $y'(t)=(a-by(t-\tau))y(t)$”, Contributions to the Theory of Nonlinear Oscillations, 4 (1958), 1–18 | MR
[3] G. S. Jones, “The existence of periodic solutions of $f'(x)=-\alpha f(x-1)\{1+f(x)\}$”, Journal of Mathematical Analysis and Applications, 5 (1962), 435–450 | DOI | MR | Zbl
[4] S. Kashchenko, “Asymptotics of the Solutions of the Generalized Hutchinson Equation”, Automatic Control and Computer Sciences, 47:7 (2013), 470–494 | DOI
[5] S. A. Kashchenko, “Periodic Solutions of Nonlinear Equations Generalizing Logistic Equations with Delay”, Math. Notes, 102 (2017), 181–192 | DOI | MR | Zbl
[6] S. Kashchenko, D. Loginov, “About Global Stable of Solutions of Logistic Equation with Delay”, Journal of Physics: Conference Series, 937:1 (2017), 012–019 | MR
[7] J. K. Hale, Theory of functional differential equations, Springer Verlag, New York, 1977 | MR | Zbl
[8] P. Hartman, Ordinary Differential Equations, Wiley, New York, 1964 | MR | Zbl
[9] S. D. Glyzin, S. A. Kashchenko, “Finite-Dimensional Mappings Describing the Dynamics of a Logistic Equation with Delay”, Doklady Mathematics, 100:1 (2019), 380–384 | DOI | MR | Zbl
[10] S. Glyzin, S. Kashchenko, “A family of finite-dimensional maps induced by a logistic equation with a delay”, Mathematical modeling, 32:3 (2020), 19–46 | MR | Zbl
[11] S. D. Glyzin, A. Y. Kolesov, N. K. Rozov, “Finite-dimensional models of diffusion chaos”, Comput. Math. and Math. Phys., 50 (2010), 816–830 | DOI | MR | Zbl
[12] J. E. Marsden, M. McCracken, The Hopf bifurcation and its applications, Appl. Math. Sci., 19, Springer-Verlag, 1976 | DOI | MR | Zbl
[13] È.È. Shnol, “On the stability of fixed points of two-dimensional mappings”, Differ. Equ., 30:7 (1994), 1156–1167 | MR | Zbl
[14] V. I. Arnold, Ordinary Differential Equations, Springer-Verlag, 1992 | MR | Zbl
[15] Y. A. Kuznetsov, Elements of Applied Bifurcationeory, Springer-Verlag, 1995 | MR
[16] Y. I. Neimark, “On some cases of periodic motions depending on parameters”, Dokl. Akad. Nauk SSSR, 129 (1959), 736–739 (In Russian) | MR | Zbl
[17] R. J. Sacker, On invariant surfaces and bifurcation of periodic solutions of ordinary differential equations, Report IMM-NYU 333, New York University, 1964 | MR
[18] R. J. Sacker, “A new approach to perturbation theory of invariant surfaces”, Comm. Pure Appl. Math., 18 (1965), 717–732 | DOI | MR | Zbl
[19] I. S. Kashchenko, S. A. Kashchenko, “Normal and quasinormal forms for systems of difference and differential-difference equations”, Communications in Nonlinear Science and Numerical Simulation, 38 (2016), 243–256 | DOI | MR | Zbl
[20] I. S. Kashchenko, S. A. Kashchenko, “Analysis of Local Dynamics of Difference and Close to Them Differential-Difference Equations”, Russ Math., 62 (2018), 24–34 | DOI | MR | Zbl