Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2020_27_3_a0, author = {V. A. Zakharov}, title = {Efficient equivalence checking technique for some classes of finite-state machines}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {260--303}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2020_27_3_a0/} }
TY - JOUR AU - V. A. Zakharov TI - Efficient equivalence checking technique for some classes of finite-state machines JO - Modelirovanie i analiz informacionnyh sistem PY - 2020 SP - 260 EP - 303 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2020_27_3_a0/ LA - ru ID - MAIS_2020_27_3_a0 ER -
V. A. Zakharov. Efficient equivalence checking technique for some classes of finite-state machines. Modelirovanie i analiz informacionnyh sistem, Tome 27 (2020) no. 3, pp. 260-303. http://geodesic.mathdoc.fr/item/MAIS_2020_27_3_a0/
[1] A. L. Rosenberg, “A machine realization of the linear context-free languages”, Information and Control, 10:2 (1967), 175–188 | DOI | Zbl
[2] M. Mohri, “Finite-state transducers in language and speech processing”, Computational linguistics, 23:2 (1997), 269–311 | MR
[3] A. Roche-Lima, R. K. Thulasiram, “Bioinformatics algorithm based on a parallel implementation of a machine learning approach using transducers”, Journal of Physics: Conference Series, 341:1 (2012), 012–034
[4] R. Alur, P. Cerny, “Streaming transducers for algorithmic verification of single-pass list-processing programs”, Proceedings of 38-th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, 2011, 599–610 | DOI | Zbl
[5] J. Thakkar, A. Kanade, R. Alur, “Transducer-based algorithmic verification of retransmission protocols over noisy channels”, Proceedings of IFIP Joint International Conference on Formal Techniques for Distributed Systems, Springer, 2013, 209–224 | DOI
[6] M. Veanes, P. Hooimeijer, B. Livshits, and et al, “Symbolic finite state transducers: Algorithms and applications”, Proceedings of the 39-th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, 2012, 137–150 | DOI | Zbl
[7] D. G. Kozlova, V. A. Zakharov, “On the model checking of sequential reactive systems”, Proceedings of the 25-th International Workshop on Concurrency, Specification and Programming (Rostock, Germany, September 28–30), CEUR Workshop Proceedings, 1698, 2016, 233
[8] M. Mohri, “Minimization algorithms for sequential transducers”, Theoretical Computer Science, 234:2 (2000), 177–201 | DOI | MR | Zbl
[9] V. A. Zakharov, S. R. Jaylauova, “On the minimization problem for sequential programs”, Automatic Control and Computer Sciences, 51:7 (2017), 689–700 | DOI | MR
[10] H. Tamm, M. Nykanen, E. Ukkonen, “On size reduction techniques for multitape automata”, Theoretical computer science, 363:2 (2006), 234–246 | DOI | MR | Zbl
[11] D. C. Luckham, D. M. Park, M. S. Paterson, “On formalized computer programs”, Journal of Computer and System Sciences, 4:3 (1970), 220–249 | DOI | MR | Zbl
[12] R. Loukanova, “Linear context free languages”, International Colloquium on Theoretical Aspects of Computing, Springer, 2007, 351–365 | Zbl
[13] B. Bedregal, “$\lambda$-ALN: automatos lineares ñao-deterministicos com $\lambda$-transições”, Tendencias em Matematica Aplicada e Computacional, 12:3 (2011), 171–182 | DOI | MR | Zbl
[14] G. Jiraskova, O. Klima, “Deterministic Biautomata and Subclasses of Deterministic Linear Languages”, International Conference on Language and Automata theory and Applications, Springer, 2019, 315–327 | DOI | MR | Zbl
[15] M. Holzer, S. Jakobi, “Nondeterministic biautomata and their descriptional complexity”, International Workshop on Descriptional Complexity of Formal Systems, Springer, 2013, 112–123 | DOI | MR | Zbl
[16] O. Klima, L. Polak, “On biautomata*”, RAIRO-Theoretical Informatics and Applications, 46:4 (2012), 573–592 | DOI | MR | Zbl
[17] M. Holzer, S. Jakobi, “Minimization and characterizations for biautomata”, Fundamenta Informaticae, 136:1-2 (2015), 113–137 | DOI | MR | Zbl
[18] P. C. Fischer, A. L. Rosenberg, “Multitape one-way nonwriting automata”, Journal of Computer and System Sciences, 2:1 (1968), 88–101 | DOI | MR | Zbl
[19] T. Griffiths, “The unsolvability of the equivalence problem for $\Lambda$-free nondeterministic generalized machines”, Journal of the ACM (JACM), 15:3 (1968), 409–413 | DOI | MR | Zbl
[20] O. Ibarra, “The unsolvability of the equivalence problem for $\varepsilon$-free NGSM's with unary input (output) alphabet and applications”, SIAM Journal on Computing, 7:4 (1978), 524–532 | DOI | MR | Zbl
[21] M. Blattner, T. Head, “Single-valued a-transducers”, Journal of Computer and System Sciences, 15:3 (1977), 310–327 | DOI | MR | Zbl
[22] M. P. Schutzenberger, “Sur les relations rationnelles”, Proceedings of the Conference on Automata theory and Formal Languages, 1975, 209–213 | MR | Zbl
[23] M. Blattner, T. Head, “The decidability of equivalence for deterministic finite transducers”, Journal of Computer and System Sciences, 19:1 (1979), 45–49 | DOI | MR | Zbl
[24] E. M. Gurari, O. Ibarra, “A note on finite-valued and finitely ambiguous transducers”, Mathematical systems theory, 16:1 (1983), 61–66 | DOI | MR | Zbl
[25] A. Weber, “On the valuedness of finite transducers”, Acta Informatica, 27:8 (1990), 749–780 | DOI | MR | Zbl
[26] K. Culik, J. Karhumaki, “The equivalence of finite valued transducers (on HDT0L languages) is decidable”, Theoretical computer science, 47 (1986), 71–84 | DOI | MR | Zbl
[27] A. Weber, “A decomposition theorem for finite-valued transducers and an application to the equivalence problem”, Proceedings of the 13-th International Symposium on Mathematical Foundations of Computer Science, Springer, 1988, 552–562 | MR
[28] A. Weber, “Decomposing finite-valued transducers and deciding their equivalence”, SIAM Journal on Computing, 22:2 (1993), 175–202 | DOI | MR | Zbl
[29] M.-P. Beal, O. Carton, C. Prieur, J. Sakarovitch, “Squaring transducers: an efficient procedure for deciding functionality and sequentiality”, Theoretical computer science, 292:1 (2003), 45–63 | DOI | MR | Zbl
[30] J. Sakarovitch, R. de Souza, “On the decomposition of $k$-valued rational relations”, Proceedings of the 25-th International Symposium on Mathematical Foundations of Computer Science, 2008, 588–600 | MR | Zbl
[31] J. Sakarovitch, R. de Souza, “On the decidability of bounded valuedness for transducers”, Proceedings of the 25-th International Symposium on Mathematical Foundations of Computer Science, 2008, 588–600 | MR | Zbl
[32] J. Sakarovitch, R. de Souza, “Lexicographic decomposition of $k$-valued transducers”, Theory of Computing Systems, 47:3 (2010), 758–785 | DOI | MR | Zbl
[33] R. de Souza, “On the decidability of the equivalence for k-valued transducers”, Proceedings of the 12-th International Conference on Developments in Language Theory, Springer, 2008, 252–263 | DOI | Zbl
[34] V. A. Zakharov, “Equivalence checking problem for finite state transducers over semigroups”, Proceedings of the 6-th International Conference on Algebraic Informatics, Springer, 2015, 208–221 | DOI | MR | Zbl
[35] A. Weber, “On the lengths of values in a finite transducer”, Acta Informatica, 29:6-7 (1992), 663–687 | DOI | MR | Zbl
[36] R. de Souza, “On the Decidability of the Equivalence for a Certain Class of Transducers”, Proceedings of the 13-th International Conference on Developments in Language Theory, Springer, 2009, 478–489 | DOI | Zbl
[37] M. Bird, “The equivalence problem for deterministic two-tape automata”, Journal of Computer and System Sciences, 7:2 (1973), 218–236 | DOI | MR | Zbl
[38] L. G. Valiant, “The equivalence problem for deterministic finite-turn pushdown automata”, Information and Control, 25:2 (1974), 123–133 | DOI | MR | Zbl
[39] C. Beeri, “An improvement on Valiant's decision procedure for equivalence of deterministic finite turn pushdown machines”, Theoretical computer science, 3:3 (1976), 305–320 | DOI | MR
[40] E. P. Friedman, S. A. Greibach, “A polynomial time algorithm for deciding the equivalence problem for 2-tape deterministic finite state acceptors”, SIAM Journal on Computing, 11:1 (1982), 166–183 | DOI | MR | Zbl
[41] T. Harju, J. Karhumaki, “The equivalence problem of multitapenite automata”, Theoretical Computer Science, 78:2 (1991), 347–355 | DOI | MR | Zbl
[42] J. Worrell, “Revisiting the equivalence problem for finite multitape automata”, Proceedings of the 40-th International Colloquium on Automata, Languages, and Programming, Springer, 2013, 422–433 | MR | Zbl
[43] B. Bedregal, “Nondeterministic Linear Automata and a Class of Deterministic Linear Languages”, Preliminary Proceedings LSFA, 2015, 183–196
[44] Y. Bar-Hillel, M. Perles, E. Shamir, “On formal properties of simple phrase structure grammars”, Sprachtypologie und Universalienforschung, 14 (1961), 143–172 | MR
[45] A. J. Korenjak, J. E. Hopcroft, “Simple deterministic languages”, 7th Annual Symposium on Switching and Automata theory (swat 1966), IEEE, 1966, 36–46 | DOI
[46] E. P. Friedman, “The inclusion problem for simple languages”, Theoretical Computer Science, 1:4 (1976), 297–316 | DOI | MR | Zbl
[47] D. Caucal, “A fast algorithm to decide on simple grammars equivalence”, International Symposium on Optimal Algorithms, Springer, 1989, 66–85 | DOI | MR
[48] C. Bastien, J. Czyzowicz, W. Fraczak, W. Rytter, “Prime normal form and equivalence of simple grammars”, International Conference on Implementation and Application of Automata, Springer, 2005, 78–89 | MR
[49] Y. Hirshfeld, M. Jerrum, F. Moller, “A polynomial algorithm for deciding bisimilarity of normed context-free processes”, Theoretical Computer Science, 158:1-2 (1996), 143–159 | DOI | MR | Zbl
[50] L. G. Valiant, M. S. Paterson, “Deterministic one-counter automata”, Journal of Computer and System Sciences, 10:3 (1975), 340–350 | DOI | MR | Zbl
[51] S. Böhm, S. Göller, “Language equivalence of deterministic real-time one-counter automata is NL-complete”, International Symposium on Mathematical Foundations of Computer Science, Springer, 2011, 194–205 | MR | Zbl
[52] G. Senizergues, “The equivalence problem for t-turn dpda is co-NP”, Proceedings of the 30-th International Colloquium on Automata, Languages, and Programming, Springer, 2003, 478–489 | MR | Zbl
[53] M. Linna, “Two decidability results for deterministic pushdown automata”, Journal of Computer and System Sciences, 18:1 (1979), 92–107 | DOI | MR | Zbl
[54] V. Y. Meytus, “The equivalence problem for real-time strict deterministic pushdown automata”, Cybernetics, 25:2 (1989), 581–594 | MR
[55] M. Oyamaguchi, “The equivalence problem for real-time DPDAs”, Journal of the ACM, 34:3 (1987), 731–760 | DOI | MR | Zbl
[56] V. Y. Romanovskii, “Equivalence problem for real-time deterministic pushdown automata”, Cybernetics, 22:2 (1985), 162–175 | DOI | MR
[57] D. J. Rosenkrantz, R. E. Stearns, “Properties of deterministic top-down grammars”, Information and Control, 17:3 (1970), 226–256 | DOI | MR | Zbl
[58] E. Tomita, “An extended direct branching algorithm for checking equivalence of deterministic pushdown automata”, Theoretical Computer Science, 32:1-2 (1984), 87–120 | DOI | MR | Zbl
[59] E. Ukkonen, “The equivalence problem for some non-real-time deterministic pushdown automata”, Journal of the ACM, 29:4 (1982), 1166–1181 | DOI | MR | Zbl
[60] G. Senizergues, “The equivalence problem for deterministic pushdown automata is decidable”, Proceedings of the 24-th International Colloquium on Automata, Languages, and Programming, Springer, 1997, 671–681 | DOI | MR | Zbl
[61] C. Stirling, “Deciding DPDA equivalence is primitive recursive”, Proceedings of the 29-th International Colloquium on Automata, Languages, and Programming, Springer, 2002, 821–832 | MR | Zbl
[62] R. Madhavan, M. Mayer, S. Gulwani, V. Kuncak, “Automating grammar comparison”, Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications, 2015, 183–200 | DOI
[63] V. A. Zakharov, “Program equivalence checking by two-tape automata”, Cybernetics and Systems Analysis, 46:4 (2010), 554–562 | DOI | MR | Zbl
[64] T. Olshansky, A. Pnueli, “A direct algorithm for checking equivalence of LL(k) grammars”, Theoretical Computer Science, 4:3 (1977), 321–349 | DOI | MR | Zbl
[65] J. Karhumaki, “Equations over finite sets of words and equivalence problems in automata theory”, Theoretical computer science, 108:1 (1993), 103–118 | DOI | MR | Zbl
[66] A. Okhotin, “Decision problems for language equations”, Journal of Computer and System Sciences, 76:3-4 (2010), 251–266 | DOI | MR | Zbl
[67] J. E. Hopcroft, R. Motwani, J. D. Ullman, Introduction to Automata theory, Languages, and Computation, 3rd ed., Addison-Wesley, 2006 | MR
[68] S. Eilenberg, Automata, languages, machines, Academic press, 1974 | MR | Zbl
[69] Y. Han, K. Salomaa, D. Wood, “State Complexity of Prefix-Free Regular Languages”, DCFS, 2006, 165–176 | MR
[70] A. Martelli, U. Montanari, “An efficient unification algorithm”, ACM Transactions on Programming Languages and Systems (TOPLAS), 4:2 (1982), 258–282 | DOI | Zbl
[71] D. Arden, “Delayed-logic and finite-state machines”, Proceedings of 2-nd Annual Symposium on Switching Circuiteory and Logical Design, SWCT 1961, IEEE, 1961, 133–151 | DOI | MR
[72] J. E. Hopcroft, A linear algorithm for testing equivalence of finite automata, Computer Science Technical Reports No 114, Defense Technical Information Center, 1971
[73] V. A. Zakharov, G. G. Temerbekova, “On the minimization of finite state transducers over semigroups”, Automatic Control and Computer Sciences, 51:7 (2017), 523–530 | DOI | MR
[74] V. E. Itkin, “Logiko-termalnaya ekvivalentnost skhem programm”, Kibernetika i sistemnyj analiz, 1972, no. 1, 5–27 | Zbl