Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2020_27_2_a3, author = {A. N. Gainullina and A. A. Shalyto and A. A. Sergushichev}, title = {Method of the joint clustering in network and correlation spaces}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {180--193}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2020_27_2_a3/} }
TY - JOUR AU - A. N. Gainullina AU - A. A. Shalyto AU - A. A. Sergushichev TI - Method of the joint clustering in network and correlation spaces JO - Modelirovanie i analiz informacionnyh sistem PY - 2020 SP - 180 EP - 193 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2020_27_2_a3/ LA - ru ID - MAIS_2020_27_2_a3 ER -
%0 Journal Article %A A. N. Gainullina %A A. A. Shalyto %A A. A. Sergushichev %T Method of the joint clustering in network and correlation spaces %J Modelirovanie i analiz informacionnyh sistem %D 2020 %P 180-193 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2020_27_2_a3/ %G ru %F MAIS_2020_27_2_a3
A. N. Gainullina; A. A. Shalyto; A. A. Sergushichev. Method of the joint clustering in network and correlation spaces. Modelirovanie i analiz informacionnyh sistem, Tome 27 (2020) no. 2, pp. 180-193. http://geodesic.mathdoc.fr/item/MAIS_2020_27_2_a3/
[1] K. Mitra, A. R. Carvunis, S. K. Ramesh, T. Ideker, “Integrative approaches fornding modular structure in biological networks”, Nat. Rev. Genet., 14:10 (2013), 719–732 | DOI
[2] E. J. Rossin et al, “Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology”, PLoS Genet, 7:1 (2011), e1001273 | DOI | MR
[3] A. K. Jha, S. C. Huang, A. Sergushichev, V. Lampropoulou, Y. Ivanova, E. Loginicheva, K. Chmielewski, K. M. Stewart, J. Ashall, B. Everts, E. J. Pearce, E. M. Driggers, M. N. Artyomov, “Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization”, Immunity, 42:3 (2015), 419–430 | DOI
[4] M. D. Leiserson et al., “Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes”, Nat. Genet., 47:2 (2015), 106–114 | DOI
[5] T. Ideker, O. Ozier, B. Schwikowski, A. F. Siegel, “Discovering regulatory and signalling circuits in molecular interaction networks”, Bioinformatics (Oxford, England), 18, Suppl. 1 (2002), S233–S240 | DOI
[6] M. T. Dittrich, G. W. Klau, A. Rosenwald, T. Dandekar, T. Muller, “Identifying functional modules in protein-protein interaction networks: an integrated exact approach”, Bioinformatics (Oxford, England), 24:13 (2008), i223-3i21 | DOI
[7] M. N. Artyomov, A. Sergushichev, J. D. Schilling, “Integrating immunometabolism and macrophage diversity”, Semin. Immunol., 28:5 (2016), 417–424 | DOI
[8] A. A. Loboda, M. N. Artyomov, A. A. Sergushichev, “Solving Generalized Maximum-Weight Connected Subgraph Problem for Network Enrichment Analysis”, Algorithms in Bioinformatics, 16th International Workshop WABI 2016, Proceedings (Aarhus, Denmark, August 22-24, 2016), Springer International Publishing, Cham, 2016, 210–221 | DOI | MR | Zbl
[9] E. Álvarez-Miranda, M. Sinnl, “A Relax-and-Cut framework for large-scale maximum weight connected subgraph problems”, Computers Operations Research, 87 (2017), 63–82 | DOI | MR | Zbl
[10] P. Langfelder, S. Horvath, “WGCNA: an R package for weighted correlation network analysis”, BMC Bioinformatics, 9 (2008), 559 | DOI