Method of the joint clustering in network and correlation spaces
Modelirovanie i analiz informacionnyh sistem, Tome 27 (2020) no. 2, pp. 180-193.

Voir la notice de l'article provenant de la source Math-Net.Ru

Network algorithms are often used to analyze and interpret the biological data. One of the widely used approaches is to solve the problem of identifying an active module, where a connected subnetwork of a biological network is selected which best reflects the difference between the two considered biological conditions. In this work this approach is extended to the case of a larger number of biological conditions and the problem of the joint clustering in network and correlation spaces is formulated. To solve this problem, an iterative method is proposed at takes as the input graph $G$ and matrix $X$, in which the rows correspond to the vertices of the graph. As the output, the algorithm produces a set of subgraphs of the graph $G$ so that each subgraph is connected and the rows corresponding to its vertices have a high pairwise correlation. The efficiency of the method is confirmed by an experimental study on the simulated data.
Keywords: active module, clustring, gene expression, biological networks.
@article{MAIS_2020_27_2_a3,
     author = {A. N. Gainullina and A. A. Shalyto and A. A. Sergushichev},
     title = {Method of the joint clustering in network and correlation spaces},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {180--193},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2020_27_2_a3/}
}
TY  - JOUR
AU  - A. N. Gainullina
AU  - A. A. Shalyto
AU  - A. A. Sergushichev
TI  - Method of the joint clustering in network and correlation spaces
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2020
SP  - 180
EP  - 193
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2020_27_2_a3/
LA  - ru
ID  - MAIS_2020_27_2_a3
ER  - 
%0 Journal Article
%A A. N. Gainullina
%A A. A. Shalyto
%A A. A. Sergushichev
%T Method of the joint clustering in network and correlation spaces
%J Modelirovanie i analiz informacionnyh sistem
%D 2020
%P 180-193
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2020_27_2_a3/
%G ru
%F MAIS_2020_27_2_a3
A. N. Gainullina; A. A. Shalyto; A. A. Sergushichev. Method of the joint clustering in network and correlation spaces. Modelirovanie i analiz informacionnyh sistem, Tome 27 (2020) no. 2, pp. 180-193. http://geodesic.mathdoc.fr/item/MAIS_2020_27_2_a3/

[1] K. Mitra, A. R. Carvunis, S. K. Ramesh, T. Ideker, “Integrative approaches fornding modular structure in biological networks”, Nat. Rev. Genet., 14:10 (2013), 719–732 | DOI

[2] E. J. Rossin et al, “Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology”, PLoS Genet, 7:1 (2011), e1001273 | DOI | MR

[3] A. K. Jha, S. C. Huang, A. Sergushichev, V. Lampropoulou, Y. Ivanova, E. Loginicheva, K. Chmielewski, K. M. Stewart, J. Ashall, B. Everts, E. J. Pearce, E. M. Driggers, M. N. Artyomov, “Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization”, Immunity, 42:3 (2015), 419–430 | DOI

[4] M. D. Leiserson et al., “Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes”, Nat. Genet., 47:2 (2015), 106–114 | DOI

[5] T. Ideker, O. Ozier, B. Schwikowski, A. F. Siegel, “Discovering regulatory and signalling circuits in molecular interaction networks”, Bioinformatics (Oxford, England), 18, Suppl. 1 (2002), S233–S240 | DOI

[6] M. T. Dittrich, G. W. Klau, A. Rosenwald, T. Dandekar, T. Muller, “Identifying functional modules in protein-protein interaction networks: an integrated exact approach”, Bioinformatics (Oxford, England), 24:13 (2008), i223-3i21 | DOI

[7] M. N. Artyomov, A. Sergushichev, J. D. Schilling, “Integrating immunometabolism and macrophage diversity”, Semin. Immunol., 28:5 (2016), 417–424 | DOI

[8] A. A. Loboda, M. N. Artyomov, A. A. Sergushichev, “Solving Generalized Maximum-Weight Connected Subgraph Problem for Network Enrichment Analysis”, Algorithms in Bioinformatics, 16th International Workshop WABI 2016, Proceedings (Aarhus, Denmark, August 22-24, 2016), Springer International Publishing, Cham, 2016, 210–221 | DOI | MR | Zbl

[9] E. Álvarez-Miranda, M. Sinnl, “A Relax-and-Cut framework for large-scale maximum weight connected subgraph problems”, Computers Operations Research, 87 (2017), 63–82 | DOI | MR | Zbl

[10] P. Langfelder, S. Horvath, “WGCNA: an R package for weighted correlation network analysis”, BMC Bioinformatics, 9 (2008), 559 | DOI