Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2020_27_1_a9, author = {A. N. Morozov}, title = {Calculation of derivatives in the $L_p$ spaces where $1 \le p \le \infty$}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {124--131}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2020_27_1_a9/} }
TY - JOUR AU - A. N. Morozov TI - Calculation of derivatives in the $L_p$ spaces where $1 \le p \le \infty$ JO - Modelirovanie i analiz informacionnyh sistem PY - 2020 SP - 124 EP - 131 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2020_27_1_a9/ LA - ru ID - MAIS_2020_27_1_a9 ER -
A. N. Morozov. Calculation of derivatives in the $L_p$ spaces where $1 \le p \le \infty$. Modelirovanie i analiz informacionnyh sistem, Tome 27 (2020) no. 1, pp. 124-131. http://geodesic.mathdoc.fr/item/MAIS_2020_27_1_a9/
[1] S. Bernstein, “On the question of local best approximation of functions”, Dokl. USSR Acad. Sci., 26:9 (1940), 839–842
[2] A. Calderón, A. Zygmund, “Local properties of solutions of elliptic partial differential equations”, Selected papers of Antoni Zygmund, Springer, 1989, 285–339 | MR
[3] A. Morozov, “On Taylor differentiability in the spaces $L_p,$ $0
\leq\infty$”, Modeling and analysis of inform. systems, 25:3 (2018), 323–330 | MR[4] A. Morozov, “Local approximations of differentiable functions”, Math. Notes, 100:2 (2016), 256–262 | MR | Zbl
[5] V. Abilov, F. Abilova, “Problems”, Math. Notes, 76 (2004), 749–757 | MR | Zbl
[6] A. Khromov, G. Khromova, “Discontinuous steklov operators in the problem of uniform approximation of derivatives on an interval”, Computational Mathematics and Mathematical Physics, 54:9 (2014), 1389–1394 | MR | Zbl
[7] V. Dzyadyk, Introduction to the theory of uniform approximation of functions by polynomials, Nauka, 1977 | MR | Zbl
[8] L. Schumaker, Spline functions: basic theory, Wiley, New York, 1981 | MR | Zbl