Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2020_27_1_a5, author = {A. N. Maksimenko}, title = {Branch and bound algorithm for the traveling salesman problem is not a direct type algorithm}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {72--85}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2020_27_1_a5/} }
TY - JOUR AU - A. N. Maksimenko TI - Branch and bound algorithm for the traveling salesman problem is not a direct type algorithm JO - Modelirovanie i analiz informacionnyh sistem PY - 2020 SP - 72 EP - 85 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2020_27_1_a5/ LA - ru ID - MAIS_2020_27_1_a5 ER -
%0 Journal Article %A A. N. Maksimenko %T Branch and bound algorithm for the traveling salesman problem is not a direct type algorithm %J Modelirovanie i analiz informacionnyh sistem %D 2020 %P 72-85 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2020_27_1_a5/ %G ru %F MAIS_2020_27_1_a5
A. N. Maksimenko. Branch and bound algorithm for the traveling salesman problem is not a direct type algorithm. Modelirovanie i analiz informacionnyh sistem, Tome 27 (2020) no. 1, pp. 72-85. http://geodesic.mathdoc.fr/item/MAIS_2020_27_1_a5/
[1] V. Bondarenko, A. Nikolaev, D. Shovgenov, “1-skeletons of the spanning tree problems with additional constraints”, Automatic Control and Computer Sciences, 51:7 (2017), 682–688
[2] V. Bondarenko, A. Nikolaev, “On graphs of the cone decompositions for the min-cut and max-cut problems”, International Journal of Mathematics and Mathematical Sciences, 2016 (2016) | MR
[3] V. Bondarenko, A. Nikolaev, “Some properties of the skeleton of the pyramidal tours polytope”, Electronic Notes in Discrete Mathematics, 61 (2017), 131–137 | Zbl
[4] V. A. Bondarenko, A. V. Nikolaev, D. Shovgenov, “Polyhedral characteristics of balanced and unbalanced bipartite subgraph problems”, Automatic Control and Computer Sciences, 51:7 (2017), 576–585 | MR
[5] V. Bondarenko, A. Nikolaev, “On the skeleton of the polytope of pyramidal tours”, Journal of Applied and Industrial Mathematics, 12:1 (2018), 9–18 | MR | Zbl
[6] V. Bondarenko, “Nonpolynomial lowerbound of the traveling salesman problem complexity in one class of algorithms”, Automation and Remote Control, 44:9 (1983), 1137–1142 | MR | Zbl
[7] V. Bondarenko, Geometricheskie metody sistemnogo analiza v kombinatornoy optimizatsii, diss. ... dokt. fiz.-mat. nauk, Yaroslavl, 1993, 148 pp.
[8] V. Bondarenko, A. Maksimenko, Geometricheskie konstruktsii i slozhnost v kombinatornoy optimizatsii, URSS, M., 2008, 182 pp.
[9] A. Maksimenko, “Kharakteristiki slozhnosti: klikovoe chislo grafa mnogogrannika i chislo pryamougolnogo pokrytiya”, Modelirovanie i analiz informatsionnykh sistem, 21:5 (2014), 116–130
[10] J. Little, K. Murty, D. Sweeney, C. Karel, “An algorithm for the traveling salesman problem”, Operations research, 11:6 (1963), 972–989 | Zbl
[11] E. Reingold, J. Nievergelt, N. Deo, Combinatorial algorithms: theory and practice, Pearson College Div., 1977, 433 pp. | MR
[12] M. Padberg, M. Rao, “The travelling salesman problem and a class of polyhedra of diameter two”, Mathematical Programming, 7:1 (1974), 32–45 | MR | Zbl