Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2020_27_1_a3, author = {S. V. Morzhov}, title = {Modern approaches to detect and classify comment toxicity using neural networks}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {48--61}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2020_27_1_a3/} }
TY - JOUR AU - S. V. Morzhov TI - Modern approaches to detect and classify comment toxicity using neural networks JO - Modelirovanie i analiz informacionnyh sistem PY - 2020 SP - 48 EP - 61 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2020_27_1_a3/ LA - ru ID - MAIS_2020_27_1_a3 ER -
S. V. Morzhov. Modern approaches to detect and classify comment toxicity using neural networks. Modelirovanie i analiz informacionnyh sistem, Tome 27 (2020) no. 1, pp. 48-61. http://geodesic.mathdoc.fr/item/MAIS_2020_27_1_a3/
[1] Toxic comment classification challenge, https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/overview
[2] S. V. Georgakopoulos, S. K. Tasoulis, A. G. Vrahatis, V. P. Plagianakos, “Convolutional neural networks for toxic comment classification”, Proceedings of the 10th hellenic conference on artificial intelligence, 2018, 1–6, arXiv: 1802.09957 | MR
[3] M. Kohli, E. Kuehler, J. Palowitch, Paying attention to toxic comments online https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/reports/6856482.pdf
[4] T. Chu, J. K., M. Wang, Comment abuse classification with deep learning https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1174/reports/2762092.pdf
[5] K. Khieu, N. Narwal, Detecting and classifying toxic comments https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/reports/6837517.pdf
[6] S. Hochreiter, J. Schmidhuber, “Long short-term memory”, Neural computation, 9:8 (1997), 1735–1780
[7] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio, Learning phrase representations using RNN encoder-decoder for statistical machine translation, 2014, arXiv: 1406.1078
[8] J. Pennington, R. Socher, C. Manning, “Glove: global vectors for word representation”, Proceedings of the 2014 conference on empirical methods in natural language processing, EMNLP, 2014, 1532–1543
[9] A. Joulin, E. Grave, P. Bojanowski, T. Mikolov, “Bag of tricks for efficient text classification”, Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, v. 2, 2017, 427–431
[10] J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical evaluation of gated recurrent neural networks on sequence modeling, 2014, arXiv: 1412.3555
[11] D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate, 2014, arXiv: 1409.0473
[12] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, E. Hovy, “Hierarchical attention networks for document classification”, Proceedings of NAACL-HLT, 2016, 1480–1489 https://www.cs.cmu.edu/h̃ovy/papers/16HLT-hierarchical-attention-networks.pdf
[13] M. Hughes, I. Li, S. Kotoulas, T. Suzumura, “Medical text classification using convolutional neural networks”, Stud. Health Technol. Inform., 235 (2017), 246–50
[14] K. Kowsari, K. Jafari Meimandi, M. Heidarysafa, S. Mendu, L. Barnes, D. Brown, “Text classification algorithms: a survey”, Information, 10:4 (2019), 150