On a segment partition for entropy estimation
Modelirovanie i analiz informacionnyh sistem, Tome 27 (2020) no. 1, pp. 40-47
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $Q_n$ be a partition of the interval $[0,1]$ defines as
$$
\begin{array}{l}
Q_1 =\{0,q^2,q,1\}. \\
Q_{n+1}' = qQ_n \cap q^2Q_n, \quad Q_{n+1}'' = q^2+qQ_n \cap qQ_n, \quad Q_{n+1}'''= q^2+qQ_n \cap q+q^2Q_n, \\
Q_{n+1} = Q_{n+1}'\cup Q_{n+1}'' \cup Q_{n+1}''',
\end{array}
$$
where $q^2+q=1$.
The sequence $d= 1,2,1,0,1,2,1,0,1,0,1,2,1,0,1,2,1,\dots$ defines as follows.
$$
\begin{array}{l}
d_1=1, \ d_2=2,\ d_4 =0; \\
d[2F_{2n}+1 : 2F_{2n+1}+1] = d[1:2F_{2n-1}+1];\\
\quad n = 0,1,2,\dots;\\
d[2F_{2n+1}+2 : 2F_{2n+1}+2F_{2n-2}] = d[2F_{2n-1}+2:2F_{2n}];\\
d[2F_{2n+1}+2F_{2n-2}+1 : 2F_{2n+1}+2F_{2n-1}+1] = d[1:2F_{2n-3}+1];\\
d[2F_{2n+1}+2F_{2n-1}+2 : 2F_{2n+2}] = d[2F_{2n-1}+2:2F_{2n}];\\
\quad n = 1,2,3,\dots;\\
\end{array}
$$
where $F_n$ are Fibonacci numbers ($F_{-1} = 0$, $F_0=F_1=1$).
The main result of this paper.
Theorem.
\begin{gather*}
Q_n' = 1 - Q_n''' =\left \{ \sum_{i=1}^k q^{n+d_i}, \ k=0,1,\dots, m_n\right\}, \\
Q_n'' = 1 - Q_n'' = \left\{q^2 + \sum_{i=m_n}^k q^{n+d_i}, k=m_n-1,m_n,\dots, m_{n+1} \right\},
\end{gather*}
where $m_{2n} = 2F_{2n-2}$, $m_{2n+1} = 2F_{2n-1}+1$.
Keywords:
measure, metric, entropy, unbiased, self-similarity, Bernoulli measure.
Mots-clés : estimation
Mots-clés : estimation
@article{MAIS_2020_27_1_a2,
author = {E. A. Timofeev},
title = {On a segment partition for entropy estimation},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {40--47},
publisher = {mathdoc},
volume = {27},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2020_27_1_a2/}
}
E. A. Timofeev. On a segment partition for entropy estimation. Modelirovanie i analiz informacionnyh sistem, Tome 27 (2020) no. 1, pp. 40-47. http://geodesic.mathdoc.fr/item/MAIS_2020_27_1_a2/