Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2019_26_3_a8, author = {S. N. Chukanov}, title = {The comparison of diffeomorphic images based on the construction of persistent homology}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {450--468}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2019_26_3_a8/} }
TY - JOUR AU - S. N. Chukanov TI - The comparison of diffeomorphic images based on the construction of persistent homology JO - Modelirovanie i analiz informacionnyh sistem PY - 2019 SP - 450 EP - 468 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2019_26_3_a8/ LA - ru ID - MAIS_2019_26_3_a8 ER -
S. N. Chukanov. The comparison of diffeomorphic images based on the construction of persistent homology. Modelirovanie i analiz informacionnyh sistem, Tome 26 (2019) no. 3, pp. 450-468. http://geodesic.mathdoc.fr/item/MAIS_2019_26_3_a8/
[1] Trouve A., Younes L., “Metamorphoses through lie group action”, Foundations of Computational Mathematics, 5:2 (2005), 173–198 | DOI | MR | Zbl
[2] Younes L., Arrate F., Miller M. I., “Evolutions equations in computational anatomy”, NeuroImage, 45:1 (2009), 540–550 | DOI
[3] Beg M., Miller M., Trouve A., Younes L., “Computing large deformation metric mappings via geodesic flows of diffeomorphisms”, Int. Journal of Computer Vision, 61:2 (2005), 139–157 | DOI
[4] Marsland S., McLachlan R. I., “A Hamiltonian particle method for diffeomorphic image registration”, Biennial International Conference on Information Processing in Medical Imaging, Springer, 2006, 396–407
[5] Carlsson G., “Topological pattern recognition for point cloud data”, Acta Numerica, 2014, no. 23, 289–368 | DOI | MR | Zbl
[6] Hatcher A., Algebraic topology, Cambridge UP, 2002, 544 pp. | MR | Zbl
[7] Leichter S. V., Chukanov S. N., “Matching of images based on their diffeomorphic mapping”, Computer Optics, 42:1 (2018), 96–104 | DOI
[8] Chukanov S. N., “Definitions of invariants for n-dimensional traced vector fields of dynamic systems”, Pattern Recognition and Image Analysis, 19:2 (2009), 303–305 | DOI
[9] Chukanov S. N., Ulianov D. V., “Formation of invariants in the visualization of vector fields based on the construction of the homotopy operator”, Computer Optics, 36:4 (2012), 622–626
[10] Chukanov S. N., “Constructing invariants for visualization of vector fields defined by integral curves of dynamic systems”, Optoelectronics, Instrumentation and Data Processing, 47:2 (2011), 58-63 | DOI
[11] Edelsbrunner H., Harer J. L., Computational topology: an introduction, American Mathematical Society, Providence, RI, 2010, 282 pp. | MR | Zbl
[12] Garber A., Edelsbrunner H., Ivanov A., Musin O., Nevskii M., “International Conference “Geometry, Topology, and Applications””, Modeling and Analysis of Information Systems, 20:6 (2013), 95–102 | DOI | Zbl
[13] Adams H., Tausz A., JavaPlex Tutorial, 2011, 20 pp.
[14] Duzhin S. V., Chebotarevskii B. D W., Transformation groups for beginners, Student Mathematical Library, 25, American Mathematical Society, 2004, 192 pp. | DOI | MR | Zbl
[15] Cang Z., Wei G., Persistent cohomology for data with multicomponent heterogeneous information, 2018 http://gis-lab.info/qa/srtm.html
[16] De Silva V., Morozov D., Vejdemo-Johansson M., “Persistent cohomology and circular coordinates”, Discrete and Computational Geometry, 45:4 (2011), 737–759 | DOI | MR | Zbl
[17] Chung F. R. K., Graham F. C., Spectral graph theory, American Mathematical Society, 1997, 207 pp. | MR | Zbl