Linear interpolation on a Euclidean ball in ${\mathbb R}^n$
Modelirovanie i analiz informacionnyh sistem, Tome 26 (2019) no. 2, pp. 279-296.

Voir la notice de l'article provenant de la source Math-Net.Ru

For $x^{(0)}\in{\mathbb R}^n, R>0$, by $B=B(x^{(0)};R)$ we denote a Euclidean ball in ${\mathbb R}^n$ given by the inequality $\|x-x^{(0)}\|\leq R$, $\|x\|:=\left(\sum_{i=1}^n x_i^2\right)^{1/2}$. Put $B_n:=B(0,1)$. We mean by $C(B)$ the space of continuous functions $f:B\to{\mathbb R}$ with the norm $\|f\|_{C(B)}:=\max_{x\in B}|f(x)|$ and by $\Pi_1\left({\mathbb R}^n\right)$ the set of polynomials in $n$ variables of degree $\leq 1$, i. e. linear functions on ${\mathbb R}^n$. Let $x^{(1)}, \ldots, x^{(n+1)}$ be the vertices of $n$-dimensional nondegenerate simplex $S\subset B$. The interpolation projector $P:C(B)\to \Pi_1({\mathbb R}^n)$ corresponding to $S$ is defined by the equalities $Pf\left(x^{(j)}\right)= f\left(x^{(j)}\right).$ Denote by $\|P\|_B$ the norm of $P$ as an operator from $C(B)$ into $C(B)$. Let us define $\theta_n(B)$ as minimal value of $\|P\|_B$ under the condition $x^{(j)}\in B$. In the paper, we obtain the formula to compute $\|P\|_B$ making use of $x^{(0)}$, $R$, and coefficients of basic Lagrange polynomials of $S$. In more details we study the case when $S$ is a regular simplex inscribed into $B_n$. In this situation, we prove that $\|P\|_{B_n}=\max\{\psi(a),\psi(a+1)\},$ where $\psi(t)=\frac{2\sqrt{n}}{n+1}\bigl(t(n+1-t)\bigr)^{1/2}+ \bigl|1-\frac{2t}{n+1}\bigr|$ $(0\leq t\leq n+1)$ and integer $a$ has the form $a=\bigl\lfloor\frac{n+1}{2}-\frac{\sqrt{n+1}}{2}\bigr\rfloor.$ For this projector, $\sqrt{n}\leq\|P\|_{B_n}\leq\sqrt{n+1}$. The equality $\|P\|_{B_n}=\sqrt{n+1}$ takes place if and only if $\sqrt{n+1}$ is an integer number. We give the precise values of $\theta_n(B_n)$ for $1\leq n\leq 4$. To supplement theoretical results we present computational data. We also discuss some other questions concerning interpolation on a Euclidean ball.
Keywords: $n$-dimensional simplex, $n$-dimensional ball, linear interpolation, projector
Mots-clés : norm.
@article{MAIS_2019_26_2_a7,
     author = {M. V. Nevskii and A. Yu. Ukhalov},
     title = {Linear interpolation on a {Euclidean} ball in ${\mathbb R}^n$},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {279--296},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2019_26_2_a7/}
}
TY  - JOUR
AU  - M. V. Nevskii
AU  - A. Yu. Ukhalov
TI  - Linear interpolation on a Euclidean ball in ${\mathbb R}^n$
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2019
SP  - 279
EP  - 296
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2019_26_2_a7/
LA  - ru
ID  - MAIS_2019_26_2_a7
ER  - 
%0 Journal Article
%A M. V. Nevskii
%A A. Yu. Ukhalov
%T Linear interpolation on a Euclidean ball in ${\mathbb R}^n$
%J Modelirovanie i analiz informacionnyh sistem
%D 2019
%P 279-296
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2019_26_2_a7/
%G ru
%F MAIS_2019_26_2_a7
M. V. Nevskii; A. Yu. Ukhalov. Linear interpolation on a Euclidean ball in ${\mathbb R}^n$. Modelirovanie i analiz informacionnyh sistem, Tome 26 (2019) no. 2, pp. 279-296. http://geodesic.mathdoc.fr/item/MAIS_2019_26_2_a7/

[1] Nevskij M. V., “Inequalities for the norms of interpolating projections”, Modeling and Analysis of Information Systems, 15:3 (2008), 28–37 (in Russ.)

[2] Nevskij M. V., “On a certain relation for the minimal norm of an interpolational projection”, Modeling and Analysis of Information Systems, 16:1 (2009), 24–43 (in Russ.)

[3] Nevskii M. V., “On a property of $n$-dimensional simplices”, Math. Notes, 87:4 (2010), 543–555 | DOI | DOI | MR | Zbl

[4] Nevskii M. V., Geometricheskie ocenki v polinomialnoy interpolyacii, P. G. Demidov Yaroslavl State University, Yaroslavl, 2012 (in Russ.)

[5] Nevskii M. V., Ukhalov A. Yu., “New estimates of numerical values related to a simplex”, Aut. Control Comp. Sci., 51:7 (2017), 770–782 | DOI | MR

[6] Nevskii M. V., Ukhalov A. Yu., “On optimal interpolation by linear functions on $n$-dimensional cube”, Aut. Control Comp. Sci., 52:7 (2018), 828–842 | DOI | MR | MR

[7] Nevskii M. V., “On some problems for a simplex and a ball in ${\mathbb R}^n$”, Modeling and Analysis of Information Systems, 25:6 (2018), 680–691 (in Russ.) | MR

[8] Szegő G., Orthogonal polynomials, American Mathematical Society, New York, 1959 (in English) | MR | Zbl

[9] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1979 (in Russian) | MR

[10] Hall M., Jr, Combinatorial theory, Blaisdall publishing company, Waltham (Massachusets) – Toronto – London, 1967 (in English) | MR | MR | Zbl

[11] Hedayat A., Wallis W. D., “Hadamard matrices and their applications”, The Annals of Statistics, 6:6 (1978), 1184–1238 | DOI | MR | Zbl

[12] Horadam K. J., Hadamard matrices and their applications, Princeton University Press, 2007 | MR | Zbl

[13] Hudelson M., Klee V., Larman D., “Largest $j$-simplices in $d$-cubes: some relatives of the Hadamard maximum determinant problem”, Linear Algebra Appl., 241 (1996), 519–598 | DOI | MR | Zbl

[14] Nevskii M., Ukhalov A., “Perfect simplices in ${\mathbb R}^5$”, Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 59:3 (2018), 501–521 | DOI | MR | Zbl

[15] Wellin P., Essentials of programming in Mathematica, Cambridge University Press, 2016 | Zbl

[16] Wolfram S., An elementary introduction to the Wolfram Language, Wolfram Media, Inc., 2017