@article{MAIS_2019_26_2_a5,
author = {S. P. Bobkov and A. S. Chernyavskaya and V. V. Shergin},
title = {Analysis of practical applications of lattice gas models},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {256--266},
year = {2019},
volume = {26},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2019_26_2_a5/}
}
TY - JOUR AU - S. P. Bobkov AU - A. S. Chernyavskaya AU - V. V. Shergin TI - Analysis of practical applications of lattice gas models JO - Modelirovanie i analiz informacionnyh sistem PY - 2019 SP - 256 EP - 266 VL - 26 IS - 2 UR - http://geodesic.mathdoc.fr/item/MAIS_2019_26_2_a5/ LA - ru ID - MAIS_2019_26_2_a5 ER -
S. P. Bobkov; A. S. Chernyavskaya; V. V. Shergin. Analysis of practical applications of lattice gas models. Modelirovanie i analiz informacionnyh sistem, Tome 26 (2019) no. 2, pp. 256-266. http://geodesic.mathdoc.fr/item/MAIS_2019_26_2_a5/
[1] Wolfram S., A new kind of science, Wolfram media, Champaign, IL, 2002 | MR | Zbl
[2] Toffoli T., Margolus N., Cellular Automata Machines:a new environment for modeling, The MIT Press, Cambridge, Massachusetts, 1987
[3] Bandman O. L., “Kletochno-avtomatnye modeli prostranstvennoj dinamiki”, Sistemnaya informatika, 10 (2006), 59–113 (in Russ.)
[4] Wolfram S., “Cellular automaton fluids 1: Basic theory”, Stat. Phys., 45:3-4 (1986), 471–526 | DOI | MR | Zbl
[5] Clavin P. et al, “Simulation of free boundaries in flow system by lattice-gas models”, Journal of Fluid Mechanics, 188 (1988), 437–464 | DOI | Zbl
[6] Frish U., Hasslacher B., Pomeau Y., “Lattice-gas automata for the Navier-Stokes equation”, Physical Review Letters, 56:14 (1986), 1505–1508 | DOI
[7] Hardy J., de Pazzis O., Pomeau Y., “Molecular dynamics of a classical lattice gas: transport properties and time correlation functions”, Physical Review, 13:5 (1976), 1949–1961 | DOI
[8] Bandman O. L., “Diskretnoe modelirovanie fiziko-himicheskih processov”, Prikladnaya diskretnaya matematika, 3 (2009), 33–49 (in Russ.)
[9] Wolfram S., “Statistical mechanics of cellular automata”, Reviews of Modern Physics, 5:3 (1983), 601–644 | DOI | MR
[10] Wolf-Gladrow D., Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction, Springer, 2005 | MR
[11] Chopard B. et al., “Cellular automata and lattice Boltzmann techniques: an approach to model and simulate complex systems”, Advances in Complex Systems, 5:2 (2002), 103–246 | DOI | MR | Zbl
[12] Shan X., Chen H., “Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation”, Phys. Rev. E, 49:4 (1994), 2941–2948 | DOI
[13] He X., Luo L., “Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation”, Phys. Rev. E, 56:6 (1997), 6811–6817 | DOI | MR
[14] Nourgaliev R. R et al., “The lattice Boltzmann equation method: Theoretical interpretation, numerics and implications”, Int. J. Multiphase Flow, 29:1 (2003), 117–169 | DOI | Zbl
[15] Frish U., Crutchfild J. P., Hasslacher B., “Lattice Gas hydrodynamics in two and three dimensions”, Complex Systems, 1 (1987), 649–707 | MR
[16] Abramovich G. N., Prikladnaya gasovaya dinamika, v. 2, Nauka, M., 1991 (in Russ.)