Fault-tolerance distributed control plane for software defined networks
Modelirovanie i analiz informacionnyh sistem, Tome 26 (2019) no. 1, pp. 101-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

The architecture of the high availability distributed control plane for SDN/OpenFlow networks are considered. High availability is achieved by redundancy of controller instances, active switch-controller communications, computing resources and tools for a controller instance failure and overloading detection and recovery. The proactive backup controller allocation algorithm which allows to minimize the time to repair in the case of a single controller instance failure is discussed. The algorithm for controller load-balancing allows dynamically reconfigure the control plane with a minimum number of switch control transfer operations to avoid controller instance overloading. The initial experimental results of the proposed algorithms for the HA distributed SDN control plane are described.
Keywords: software-defined networking, SDN, distributed control plane, fault tolerance, loadbalancing, OpenFlow, data plane, network architecture.
Mots-clés : DCP
@article{MAIS_2019_26_1_a7,
     author = {V. N. Pashkov},
     title = {Fault-tolerance distributed control plane for software defined networks},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {101--121},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2019_26_1_a7/}
}
TY  - JOUR
AU  - V. N. Pashkov
TI  - Fault-tolerance distributed control plane for software defined networks
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2019
SP  - 101
EP  - 121
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2019_26_1_a7/
LA  - ru
ID  - MAIS_2019_26_1_a7
ER  - 
%0 Journal Article
%A V. N. Pashkov
%T Fault-tolerance distributed control plane for software defined networks
%J Modelirovanie i analiz informacionnyh sistem
%D 2019
%P 101-121
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2019_26_1_a7/
%G ru
%F MAIS_2019_26_1_a7
V. N. Pashkov. Fault-tolerance distributed control plane for software defined networks. Modelirovanie i analiz informacionnyh sistem, Tome 26 (2019) no. 1, pp. 101-121. http://geodesic.mathdoc.fr/item/MAIS_2019_26_1_a7/

[1] McKeown N., et al., “Openflow: Enabling innovation in campus networks”, ACM Computer Communication Review, 38:2 (2008), 69–74 | DOI

[2] Software-Defined Networking: The New Norm for Networks, ONF White Paper, Open Networking Foundation, 2012

[3] Smeliansky R.L., “Software Defined Network”, Open Systems. DBMS, 9 (2012), 15–26 (in Russian)

[4] OpenFlow Switch Specification, Version 1.0.0 (Wire Protocol 0x01), Open Networking Foundation, 2009

[5] Gude N., et al., “NOX: towards an operating system for networks”, SIGCOMM Computer Communication Review, 38:3 (2008), 105–110 | DOI

[6] NOX OpenFlow Controller, http://www.noxrepo.org/

[7] Erickson D., “The Beacon OpenFlow controller”, Proceedings HotSDN (August, 2013)

[8] Beacon OpenFlow Controller, https://openflow.stanford.edu/display/Beacon

[9] Floodlight OpenFlow Controller, http://floodlight.openflowhub.org

[10] OpenMul OpenFlow/SDN Controller, http://www.openmul.org/

[11] RUNOS OpenFlow Controller, https://github.com/ARCCN/runos

[12] OpenFlow Switch Specification, Version 1.3.0 (Wire Protocol 0x04), Open Networking Foundation, 2012

[13] Tootoocian A., Ganjali Y., “HyperFlow: A distribute control plane for OpenFlow”, Proceedings of the 2010 INM conference/WREN workshop, 2010, 3

[14] Koponen T., et al., “Onix: A distributed control platform for large-scale production networks”, OSDI'10, USENIX, 2010

[15] Yeganeh S.H., Kandoo Y.G., “A Framework for Efficient and Scalable Offloading of Control Applications”, Proceedings of the First Workshop on Hot Topics in Software Defined Networks, HotSDN'12, ACM, New York, NY, USA, 2012, 19–24 | DOI

[16] Phemius K., Bouet M., Leguay J., “Disco: Distributed multi-domain sdn controllers”, Network Operations and Management Symposium, NOMS, IEEE, 2014, 1–4

[17] Dixit A., et al., “Towards an Elastic Distributed SDN Controller”, Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, HotSDN'13, ACM, New York, NY, USA, 2013, 7–12 | DOI

[18] Pashkov V., Shalimov A., Smeliansky R., “Controller Failover for Enterprise SDN”, Proceedings of the Modern Networking Technologies, MoNeTec'2014, IEEE, 2014, 27–29

[19] Lantz B., et al., “ONOS: Towards an Open, Distributed SDN OS”, ACM SIGCOMM HotSDN Workshop (August, 2014)

[20] ONOS: Open Network Operating System, https://github.com/opennetworkinglab/onos

[21] Heller B., Sherwood R., McKeown N., “The Controller Placement Problem”, Proceedings of the first workshop on Hot topics in software-defined networks, ACM, 2012 | Zbl

[22] Chinneck J.W., Practical optimization: a gentle introduction, , 2012 https://sce.carleton.ca/faculty/chinneck/po.html

[23] Bolosky W., et al., “Paxos Replicated State Machines as the Basis of a High-Performance Data Store”, Proceedings of the NSDI, 2011

[24] Knight S., et al., The internet topology zoo, http://www.topology-zoo.org

[25] Rocketfuel: An ISP Topology Mapping Engine, https://research.cs.washington.edu/networking/rocketfuel