On some problems for a simplex and a ball in ${\mathbb R}^n$
Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 6, pp. 680-691.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $C$ be a convex body and let $S$ be a nondegenerate simplex in ${\mathbb R}^n$. Denote by $\tau S$ the image of $S$ under homothety with a center of homothety in the center of gravity of $S$ and the ratio $\tau$. We mean by $\xi(C;S)$ the minimal $\tau>0$ such that $C$ is a subset of the simplex $\tau S$. Define $\alpha(C;S)$ as the minimal $\tau>0$ such that $C$ is contained in a translate of $\tau S$. Earlier the author has proved the equalities $\xi(C;S)=(n+1)\max\limits_{1\leq j\leq n+1} \max\limits_{x\in C}(-\lambda_j(x))+1$ (if $C\not\subset S$), $\alpha(C;S)= \sum\limits_{j=1}^{n+1} \max\limits_{x\in C} (-\lambda_j(x))+1.$ Here $\lambda_j$ are the linear functions that are called the basic Lagrange polynomials corresponding to $S$. The numbers $\lambda_j(x),\ldots, \lambda_{n+1}(x)$ are the barycentric coordinates of a point $x\in{\mathbb R}^n$. In his previous papers, the author investigated these formulae in the case when $C$ is the $n$-dimensional unit cube $Q_n=[0,1]^n$. The present paper is related to the case when $C$ coincides with the unit Euclidean ball $B_n=\{x: \|x\|\leq 1\},$ where $\|x\|=\left(\sum\limits_{i=1}^n x_i^2 \right)^{1/2}.$ We establish various relations for $\xi(B_n;S)$ and $\alpha(B_n;S)$, as well as we give their geometric interpretation. For example, if $\lambda_j(x)= l_{1j}x_1+\ldots+ l_{nj}x_n+l_{n+1,j},$ then $\alpha(B_n;S)= \sum\limits_{j=1}^{n+1}\left(\sum\limits_{i=1}^n l_{ij}^2\right)^{1/2}$. The minimal possible value of each characteristics $\xi(B_n;S)$ and $\alpha(B_n;S)$ for $S\subset B_n$ is equal to $n$. This value corresponds to a regular simplex inscribed into $B_n$. Also we compare our results with those obtained in the case $C=Q_n$.
Keywords: $n$-dimensional simplex, $n$-dimensional ball, homothety
Mots-clés : absorption index.
@article{MAIS_2018_25_6_a5,
     author = {M. V. Nevskii},
     title = {On some problems for a simplex and a ball in ${\mathbb R}^n$},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {680--691},
     publisher = {mathdoc},
     volume = {25},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2018_25_6_a5/}
}
TY  - JOUR
AU  - M. V. Nevskii
TI  - On some problems for a simplex and a ball in ${\mathbb R}^n$
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2018
SP  - 680
EP  - 691
VL  - 25
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2018_25_6_a5/
LA  - ru
ID  - MAIS_2018_25_6_a5
ER  - 
%0 Journal Article
%A M. V. Nevskii
%T On some problems for a simplex and a ball in ${\mathbb R}^n$
%J Modelirovanie i analiz informacionnyh sistem
%D 2018
%P 680-691
%V 25
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2018_25_6_a5/
%G ru
%F MAIS_2018_25_6_a5
M. V. Nevskii. On some problems for a simplex and a ball in ${\mathbb R}^n$. Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 6, pp. 680-691. http://geodesic.mathdoc.fr/item/MAIS_2018_25_6_a5/

[1] Nevskij M. V., “On a certain relation for the minimal norm of an interpolational projection”, Modeling and Analysis of Information Systems, 16:1 (2009), 24–43 (in Russian)

[2] Nevskii M. V., “On a property of $n$-dimensional simplices”, Math. Notes, 87:4 (2010), 543–555 | DOI | DOI | MR | Zbl

[3] Nevskii M. V., Geometricheskie ocenki v polinomialnoy interpolyacii, P. G. Demidov Yaroslavl State University, Yaroslavl, 2012 (in Russian)

[4] Nevskii M. V., “On the minimal positive homothetic image of a simplex containing a convex body”, Math. Notes, 93:3–4 (2013), 470–478 | DOI | DOI | MR | Zbl

[5] Nevskii M. V., Ukhalov A. Yu., “On numerical charasteristics of a simplex and their estimates”, Aut. Control Comp. Sci., 51:7 (2017), 757–769 | DOI | MR

[6] Nevskii M. V., Ukhalov A. Yu., “New estimates of numerical values related to a simplex”, Aut. Control Comp. Sci., 51:7 (2017), 770–782 | DOI | MR

[7] Nevskii M. V., Ukhalov A. Yu., “On $n$-Dimensional Simplices Satisfying Inclusions $S\subset [0,1]^n\subset nS$”, Modeling and Analysis of Information Systems, 24:5 (2017), 578–595 (in Russian) | MR

[8] Nevskii M. V., Ukhalov A. Yu., “On Minimal Absorption Index for an $n$-Dimensional Simplex”, Modeling and Analysis of Information Systems, 25:1 (2018), 140–150 (in Russian) | MR

[9] Hudelson M., Klee V., Larman D., “Largest $j$-simplices in $d$-cubes: some relatives of the Hadamard maximum determinant problem”, Linear Algebra Appl., 241–243 (1996), 519–598 | DOI | MR | Zbl

[10] Klamkin M. S., Tsifinis G. A., “Circumradius–inradius inequality for a simplex”, Mathematics Magazine, 52:1 (1979), 20–22 | DOI | MR | Zbl

[11] Nevskii M., “Properties of axial diameters of a simplex”, Discrete Comput. Geom., 46:2 (2011), 301–312 | DOI | MR | Zbl

[12] Nevskii M., Ukhalov A., “Perfect simplices in ${\mathbb R}^5$”, Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 59:3 (2018), 501–521 | DOI | MR | Zbl

[13] Yang S., Wang J., “Improvements of $n$-dimensional Euler inequality”, Journal of Geometry, 51 (1994), 190–195 | DOI | MR | Zbl

[14] Vince A., “A simplex contained in a sphere”, Journal of Geometry, 89:1–2 (2008), 169–178 | DOI | MR | Zbl