Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2018_25_5_a9, author = {S. D. Glyzin and E. A. Marushkina}, title = {Disordered oscillations in a neural network of three oscillators with a delayed broadcast connection}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {572--583}, publisher = {mathdoc}, volume = {25}, number = {5}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2018_25_5_a9/} }
TY - JOUR AU - S. D. Glyzin AU - E. A. Marushkina TI - Disordered oscillations in a neural network of three oscillators with a delayed broadcast connection JO - Modelirovanie i analiz informacionnyh sistem PY - 2018 SP - 572 EP - 583 VL - 25 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2018_25_5_a9/ LA - ru ID - MAIS_2018_25_5_a9 ER -
%0 Journal Article %A S. D. Glyzin %A E. A. Marushkina %T Disordered oscillations in a neural network of three oscillators with a delayed broadcast connection %J Modelirovanie i analiz informacionnyh sistem %D 2018 %P 572-583 %V 25 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2018_25_5_a9/ %G ru %F MAIS_2018_25_5_a9
S. D. Glyzin; E. A. Marushkina. Disordered oscillations in a neural network of three oscillators with a delayed broadcast connection. Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 5, pp. 572-583. http://geodesic.mathdoc.fr/item/MAIS_2018_25_5_a9/
[1] Uri Alon, “Network motifs: theory and experimental approaches”, Nature Reviews Genetics, 8:6 (2007), 450–461 | DOI
[2] Milo R., Shen-Orr S., Itzkovitz S., et al., “Network motifs: Simple Building Blocks of Complex Networks”, Science, 298:5594 (2002), 824–827 | DOI
[3] Yechiam Yemini, The Topology of Biological Networks, Computer Science Department, Columbia University, 2004
[4] Glyzin S. D., “Dynamical properties of the simplest finite-difference approximations of the “reaction-diffusion” boundary value problem”, Differential Equations, 33:6 (1997), 808–814 | MR | Zbl
[5] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Chaos Phenomena in a Circle of Three Unidirectionally Connected Oscillators”, Computational Mathematics and Mathematical Physics, 46:10 (2006), 1724–1736 | DOI | MR
[6] Glyzin S. D., “Solutions behavior of the normal form of a system of three coupled difference oscillators”, Model. Anal. Inform. Syst., 13:1 (2006), 49–57 (in Russian)
[7] Glyzin S. D., “Difference approximations of “reaction-diffusion” equation on a segment”, Model. Anal. Inform. Syst., 16:3 (2009), 96–116 (in Russian)
[8] Glyzin S. D., “Relaxation oscillations of electrically coupled neuron-like systems with delay”, Model. Anal. Inform. Syst., 17:2 (2010), 28–47 (in Russian)
[9] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Self-excited relaxation oscillations in networks of impulse neurons”, Russian Math. Surveys, 70:3 (2015), 383–452 | DOI | DOI | MR | Zbl
[10] Glyzin S. D., Kiseleva E. O., “The account of delay in a connecting element between two oscillators”, Model. Anal. Inform. Syst., 17:2 (2010), 133–143 (in Russian) | MR
[11] Glyzin S. D., Soldatova E. A., “The factor of delay in a system of coupled oscillators FitzHugh–Nagumo”, Model. Anal. Inform. Syst., 17:3 (2010), 134–143 (in Russian)
[12] Hutchinson G. E., “Circular causal system in ecology”, Ann. N.-Y. Acad. Sci., 50 (1948), 221–246 | DOI
[13] Glyzin S. D., “Statsionarnyye rezhimy odnoy konechnoraznostnoy approksimatsii uravneniya Khatchinsona s diffuziyey”, Kachestvennyye i priblizhennyye metody issledovaniya operatornykh uravneniy, Yaroslavl, 1986, 112–127 (in Russian) | MR
[14] Glyzin S. D., “A registration of age groups for the Hutchinson's equation”, Model. Anal. Inform. Syst., 14:3 (2007), 29–42 (in Russian) | MR
[15] Tolbey A. O., “Local Dynamics of Three Coupled Oscillators with a Feedback Loop”, Model. Anal. Inform. Syst., 19:3 (2012), 105–112 (in Russian)
[16] Glyzin S. D., Kolesov A. Yu., Lokalnye metody analiza dinamicheskih sistem, Yaroslavl State University, Yaroslavl, 2006, 92 pp. (in Russian)
[17] Marushkina E. A., “Periodic and Quasiperiodic Solutions in the System of Three Hutchinson Equations with a Delayed Broadcast Connection”, Model. Anal. Inform. Syst., 25:1 (2018), 102–111 (in Russian) | MR
[18] Glyzin D. S., Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “The dynamic renormalization method for finding the maximum lyapunov exponent of a chaotic attractor”, Differential Equations, 41:2 (2005), 284–289 | DOI | MR | Zbl