Isoperimetric and functional inequalities
Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 3, pp. 331-342.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish lower estimates for an integral functional $$\int\limits_\Omega f(u(x), \nabla u(x)) \, dx ,$$ where $\Omega$ — a bounded domain in $\mathbb{R}^n \; (n \geqslant 2)$, an integrand $f(t,p) \, (t \in [0, \infty),\; p \in \mathbb{R}^n)$ – a function that is $B$-measurable with respect to a variable $t$ and is convex and even in the variable $p$, $\nabla u(x)$ — a gradient (in the sense of Sobolev) of the function $u \colon \Omega \rightarrow \mathbb{R}$. In the first and the second sections we utilize properties of permutations of differentiable functions and an isoperimetric inequality $H^{n-1}( \partial A) \geqslant \lambda(m_n A)$, that connects $(n-1)$-dimensional Hausdorff measure $H^{n-1}(\partial A )$ of relative boundary $\partial A$ of the set $A \subset \Omega$ with its $n$-dimensional Lebesgue measure $m_n A$. The integrand $f$ is assumed to be isotropic, i.e. $f(t,p) = f(t,q)$ if $|p| = |q|$. Applications of the established results to multidimensional variational problems are outlined. For functions $ u $ that vanish on the boundary of the domain $\Omega$, the assumption of the isotropy of the integrand $ f $ can be omitted. In this case, an important role is played by the Steiner and Schwartz symmetrization operations of the integrand $ f $ and of the function $ u $. The corresponding variants of the lower estimates are discussed in the third section. What is fundamentally new here is that the symmetrization operation is applied not only to the function $u$, but also to the integrand $f$. The geometric basis of the results of the third section is the Brunn-Minkowski inequality, as well as the symmetrization properties of the algebraic sum of sets.
Mots-clés : permutation, gradient
Keywords: convex function, measure, symmetrization, isoperimetric inequality.
@article{MAIS_2018_25_3_a7,
     author = {V. S. Klimov},
     title = {Isoperimetric and functional inequalities},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {331--342},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2018_25_3_a7/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - Isoperimetric and functional inequalities
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2018
SP  - 331
EP  - 342
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2018_25_3_a7/
LA  - ru
ID  - MAIS_2018_25_3_a7
ER  - 
%0 Journal Article
%A V. S. Klimov
%T Isoperimetric and functional inequalities
%J Modelirovanie i analiz informacionnyh sistem
%D 2018
%P 331-342
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2018_25_3_a7/
%G ru
%F MAIS_2018_25_3_a7
V. S. Klimov. Isoperimetric and functional inequalities. Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 3, pp. 331-342. http://geodesic.mathdoc.fr/item/MAIS_2018_25_3_a7/

[1] Polya G., Szego G., Isoperimetric Inequalities in Mathematical Physics, Princeton, 1951 | MR

[2] Maz'ja Vladimir G., Sobolev spaces, Translated from the Russian by T.O. Shaposhnikova, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985 | DOI | MR | MR | Zbl

[3] Sobolev S. L., Introduction to the Theory of Cubature formulas, Nauka, M., 1974 (in Russian) | MR

[4] Kolyada V.I., “Rearrangements of functions and embedding theorems”, Russian Math. Surveys, 44:5 (1989), 73–117 | DOI | MR | Zbl

[5] Evans L.S., Gariepy R.F., Measure theory and fine properties of functions, CRC Press, Boca Raton, Florida, 1992 | MR | Zbl

[6] Kawohl B., Rearrangements and convexity of level sets in P.D.E., Lectures Notes in Math., 1150, Springer-Verlag, Berlin, 1985 | DOI | MR

[7] Talenti G., “On Isoperimetric Theorems of Mathematical Physics”, Handbook of convex Geometry, v. B, North-Holland, Amsterdam–New York, 1993 | MR

[8] Kesavan S., Symmetrization Applications, World Scientific, New Jersey, 2006, 160 pp. | MR | Zbl

[9] Rakotoson J.-M., Rearrangement Relatif: Un instrument destimations dans les problemes aux limites, Mathematiques et Applications, 64, French Edition, Springer, 2008 | DOI | MR | Zbl

[10] Solynin A. Yu., “Continuous symmetrization via polarization”, Algebra i Analis, 24:1 (2012), 157–222 | MR

[11] Rockafellar R.T., Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970 | MR | Zbl

[12] Hadwiger H., Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, 93, Springer-Verlag, 1957 | MR | Zbl

[13] Klimov V.S., “Imbedding theorems and geometric inequalities”, Mathematics of the USSR–Izvestiya, 10:3 (1976), 615–638 | DOI | MR | Zbl

[14] Klimov V. S., “Ob ocenkah snisu nekotoryh integralnyh funcionalov”, Kachestvennye i priblizhennye metody issledovaniya operatornyh uravnenii, Yar. gos. un-t, Yaroslavl, 1981, 77–87 (in Russian)

[15] Klimov V.S., “On imbedding theorems for anisotropic classes of functions”, Mathematics of the USSR–Sbornik, 55:1 (1986), 195–205 | DOI | MR | Zbl | Zbl

[16] Klimov V. S., “On the symmetrization of anisotropic integral functionals”, Russian Mathematics (Izvestiya VUZ. Matematika), 43:8 (1999), 23–29 | MR | Zbl

[17] Klimov V. S., “Symmetrization of functions from Sobolev spaces”, Russian Mathematics (Izvestiya VUZ. Matematika), 46:11 (2002), 41–47 | MR | Zbl