Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2018_25_3_a7, author = {V. S. Klimov}, title = {Isoperimetric and functional inequalities}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {331--342}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2018_25_3_a7/} }
V. S. Klimov. Isoperimetric and functional inequalities. Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 3, pp. 331-342. http://geodesic.mathdoc.fr/item/MAIS_2018_25_3_a7/
[1] Polya G., Szego G., Isoperimetric Inequalities in Mathematical Physics, Princeton, 1951 | MR
[2] Maz'ja Vladimir G., Sobolev spaces, Translated from the Russian by T.O. Shaposhnikova, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985 | DOI | MR | MR | Zbl
[3] Sobolev S. L., Introduction to the Theory of Cubature formulas, Nauka, M., 1974 (in Russian) | MR
[4] Kolyada V.I., “Rearrangements of functions and embedding theorems”, Russian Math. Surveys, 44:5 (1989), 73–117 | DOI | MR | Zbl
[5] Evans L.S., Gariepy R.F., Measure theory and fine properties of functions, CRC Press, Boca Raton, Florida, 1992 | MR | Zbl
[6] Kawohl B., Rearrangements and convexity of level sets in P.D.E., Lectures Notes in Math., 1150, Springer-Verlag, Berlin, 1985 | DOI | MR
[7] Talenti G., “On Isoperimetric Theorems of Mathematical Physics”, Handbook of convex Geometry, v. B, North-Holland, Amsterdam–New York, 1993 | MR
[8] Kesavan S., Symmetrization Applications, World Scientific, New Jersey, 2006, 160 pp. | MR | Zbl
[9] Rakotoson J.-M., Rearrangement Relatif: Un instrument destimations dans les problemes aux limites, Mathematiques et Applications, 64, French Edition, Springer, 2008 | DOI | MR | Zbl
[10] Solynin A. Yu., “Continuous symmetrization via polarization”, Algebra i Analis, 24:1 (2012), 157–222 | MR
[11] Rockafellar R.T., Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970 | MR | Zbl
[12] Hadwiger H., Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, 93, Springer-Verlag, 1957 | MR | Zbl
[13] Klimov V.S., “Imbedding theorems and geometric inequalities”, Mathematics of the USSR–Izvestiya, 10:3 (1976), 615–638 | DOI | MR | Zbl
[14] Klimov V. S., “Ob ocenkah snisu nekotoryh integralnyh funcionalov”, Kachestvennye i priblizhennye metody issledovaniya operatornyh uravnenii, Yar. gos. un-t, Yaroslavl, 1981, 77–87 (in Russian)
[15] Klimov V.S., “On imbedding theorems for anisotropic classes of functions”, Mathematics of the USSR–Sbornik, 55:1 (1986), 195–205 | DOI | MR | Zbl | Zbl
[16] Klimov V. S., “On the symmetrization of anisotropic integral functionals”, Russian Mathematics (Izvestiya VUZ. Matematika), 43:8 (1999), 23–29 | MR | Zbl
[17] Klimov V. S., “Symmetrization of functions from Sobolev spaces”, Russian Mathematics (Izvestiya VUZ. Matematika), 46:11 (2002), 41–47 | MR | Zbl