Isoperimetric and functional inequalities
Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 3, pp. 331-342

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish lower estimates for an integral functional $$\int\limits_\Omega f(u(x), \nabla u(x)) \, dx ,$$ where $\Omega$ — a bounded domain in $\mathbb{R}^n \; (n \geqslant 2)$, an integrand $f(t,p) \, (t \in [0, \infty),\; p \in \mathbb{R}^n)$ – a function that is $B$-measurable with respect to a variable $t$ and is convex and even in the variable $p$, $\nabla u(x)$ — a gradient (in the sense of Sobolev) of the function $u \colon \Omega \rightarrow \mathbb{R}$. In the first and the second sections we utilize properties of permutations of differentiable functions and an isoperimetric inequality $H^{n-1}( \partial A) \geqslant \lambda(m_n A)$, that connects $(n-1)$-dimensional Hausdorff measure $H^{n-1}(\partial A )$ of relative boundary $\partial A$ of the set $A \subset \Omega$ with its $n$-dimensional Lebesgue measure $m_n A$. The integrand $f$ is assumed to be isotropic, i.e. $f(t,p) = f(t,q)$ if $|p| = |q|$. Applications of the established results to multidimensional variational problems are outlined. For functions $ u $ that vanish on the boundary of the domain $\Omega$, the assumption of the isotropy of the integrand $ f $ can be omitted. In this case, an important role is played by the Steiner and Schwartz symmetrization operations of the integrand $ f $ and of the function $ u $. The corresponding variants of the lower estimates are discussed in the third section. What is fundamentally new here is that the symmetrization operation is applied not only to the function $u$, but also to the integrand $f$. The geometric basis of the results of the third section is the Brunn-Minkowski inequality, as well as the symmetrization properties of the algebraic sum of sets.
Mots-clés : permutation, gradient
Keywords: convex function, measure, symmetrization, isoperimetric inequality.
@article{MAIS_2018_25_3_a7,
     author = {V. S. Klimov},
     title = {Isoperimetric and functional inequalities},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {331--342},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2018_25_3_a7/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - Isoperimetric and functional inequalities
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2018
SP  - 331
EP  - 342
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2018_25_3_a7/
LA  - ru
ID  - MAIS_2018_25_3_a7
ER  - 
%0 Journal Article
%A V. S. Klimov
%T Isoperimetric and functional inequalities
%J Modelirovanie i analiz informacionnyh sistem
%D 2018
%P 331-342
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2018_25_3_a7/
%G ru
%F MAIS_2018_25_3_a7
V. S. Klimov. Isoperimetric and functional inequalities. Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 3, pp. 331-342. http://geodesic.mathdoc.fr/item/MAIS_2018_25_3_a7/