On the Taylor differentiability in spaces $L_p, 0$
Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 3, pp. 323-330.

Voir la notice de l'article provenant de la source Math-Net.Ru

The function $f\in L_p[I], \;p>0,$ is called $(k,p)$-differentiable at a point $x_0\in I$ if there exists an algebraic polynomial of $\pi$ of degree no more than $k$ for which holds $ \Vert f-\pi \Vert_{L_p[J_h]} = o(h^{k+\frac{1}{p}}), $ where $\;J_h=[x_0-h; x_0+h]\cap I.$ At an internal point for $k=1$ and $p=\infty$ this is equivalent to the usual definition of the function differentiability. At an interior point for $k=1$ and $p=\infty$, the definition is equivalent to the usual differentiability of the function. There is a standard "hierarchy" for the existence of differentials(if $p_1$ then $(k,p_2)$-differentiability should be $(k,p_1)$-differentiability.) In the works of S.N. Bernstein, A.P. Calderon and A. Zygmund were given applications of such a construction to build a description of functional spaces ($p=\infty$) and the study of local properties of solutions of differential equations $(1\le p\le\infty)$, respectively. This article is related to the first mentioned work. The article introduces the concept of uniform differentiability. We say that a function $f$, $(k,p)$-differentiable at all points of the segment $I$, is uniformly $(k,p)$-differentiable on $I$ if for any number $\varepsilon>0$ there is a number $\delta>0$ such that for each point $x\in I$ runs $ \Vert f-\pi\Vert_{L_p[J_h]}\varepsilon\cdot h^{k+\frac{1}{p}} \; $ for $0$ where $\pi$ is the polynomial of the terms of the $(k, p)$-differentiability at the point $x$. Based on the methods of local approximations of functions by algebraic polynomials it is shown that a uniform $(k,p)$-differentiability of the function $f$ at some $1\le p\le\infty$ implies $f\in C^k[I].$ Therefore, in this case the differentials are "equivalent". Since every function from $C^k[I]$ is uniformly $(k,p)$-differentiable on the interval $I$ at $1\le p\le\infty,$ we obtain a certain criterion of belonging to this space. The range $0$ obviously, can be included into the necessary condition the membership of the function $C^k[I]$, but the sufficiency of Taylor differentiability in this range has not yet been fully proven.
Keywords: Taylor differentiability of function, local approximations of functions.
@article{MAIS_2018_25_3_a6,
     author = {A. N. Morozov},
     title = {On the {Taylor} differentiability in spaces $L_p, 0<p\leq \infty$},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {323--330},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2018_25_3_a6/}
}
TY  - JOUR
AU  - A. N. Morozov
TI  - On the Taylor differentiability in spaces $L_p, 0
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2018
SP  - 323
EP  - 330
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2018_25_3_a6/
LA  - ru
ID  - MAIS_2018_25_3_a6
ER  - 
%0 Journal Article
%A A. N. Morozov
%T On the Taylor differentiability in spaces $L_p, 0
%J Modelirovanie i analiz informacionnyh sistem
%D 2018
%P 323-330
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2018_25_3_a6/
%G ru
%F MAIS_2018_25_3_a6
A. N. Morozov. On the Taylor differentiability in spaces $L_p, 0
                  
                

[1] Bernstein S. N., “On the Question of Local Best Approximation of Functions”, Dokl. USSR Acad. Sci., 26:9 (1940), 839–842 (in Russian)

[2] Calderon A. P., Zygmund A., “Local properties of solution of elliptic partial differential equation”, Studia Math., 20 (1961), 171–225 | DOI | MR | Zbl

[3] Chebyshev P. L., Collected Works, In 5 v., v. 2, Izd. AN SSSR, M.–L., 1954 (in Russian) | MR

[4] Morozov A. N.,, “Analog of Bernstein's Theorem in the Space $L_1$”, Math. Notes, 57:5 (1995), 485–488 | DOI | MR | Zbl

[5] Morozov A. N., “On a Characterization of Spaces of Differentiable Functions”, Math. Notes, 70:5 (2001), 688–697 | DOI | DOI | MR | Zbl

[6] Brudnyi Yu. A., “Criteria for the Existence of Derivatives in $ L^p$”, Mathematics of the USSR-Sbornik, 2:1 (1967), 35–55 | DOI | MR

[7] Brudnyi Yu. A., “Spaces Defined by Meanes of Local Approximations”, Trans. Moscow Math. Soc., 24 (1971), 73—139 | MR | Zbl

[8] Morozov A. N., “Local Approximations of Differentiable Functions”, Math. Notes, 100:2 (2016), 256–262 | DOI | DOI | MR | Zbl

[9] Irodova I. P., “Svoystva funktsiy, zadannykh skorostyu ubyvaniya kusochno-polinomialnoy approksimatsii”, Issledovaniya po teorii funktsiy mnogikh veshchestvennykh peremennykh, Sb. nauch. trudov, Yaroslavl, 1980, 92–117 (in Russian) | MR | Zbl