Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2018_25_3_a6, author = {A. N. Morozov}, title = {On the {Taylor} differentiability in spaces $L_p, 0<p\leq \infty$}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {323--330}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2018_25_3_a6/} }
A. N. Morozov. On the Taylor differentiability in spaces $L_p, 0
[1] Bernstein S. N., “On the Question of Local Best Approximation of Functions”, Dokl. USSR Acad. Sci., 26:9 (1940), 839–842 (in Russian)
[2] Calderon A. P., Zygmund A., “Local properties of solution of elliptic partial differential equation”, Studia Math., 20 (1961), 171–225 | DOI | MR | Zbl
[3] Chebyshev P. L., Collected Works, In 5 v., v. 2, Izd. AN SSSR, M.–L., 1954 (in Russian) | MR
[4] Morozov A. N.,, “Analog of Bernstein's Theorem in the Space $L_1$”, Math. Notes, 57:5 (1995), 485–488 | DOI | MR | Zbl
[5] Morozov A. N., “On a Characterization of Spaces of Differentiable Functions”, Math. Notes, 70:5 (2001), 688–697 | DOI | DOI | MR | Zbl
[6] Brudnyi Yu. A., “Criteria for the Existence of Derivatives in $ L^p$”, Mathematics of the USSR-Sbornik, 2:1 (1967), 35–55 | DOI | MR
[7] Brudnyi Yu. A., “Spaces Defined by Meanes of Local Approximations”, Trans. Moscow Math. Soc., 24 (1971), 73—139 | MR | Zbl
[8] Morozov A. N., “Local Approximations of Differentiable Functions”, Math. Notes, 100:2 (2016), 256–262 | DOI | DOI | MR | Zbl
[9] Irodova I. P., “Svoystva funktsiy, zadannykh skorostyu ubyvaniya kusochno-polinomialnoy approksimatsii”, Issledovaniya po teorii funktsiy mnogikh veshchestvennykh peremennykh, Sb. nauch. trudov, Yaroslavl, 1980, 92–117 (in Russian) | MR | Zbl