Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2018_25_3_a5, author = {O. V. Oreshkina (Nikol'skaya)}, title = {On the {Hodge,} {Tate} and {Mumford--Tate} conjectures for fibre products of families of regular surfaces with geometric genus~1}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {312--322}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2018_25_3_a5/} }
TY - JOUR AU - O. V. Oreshkina (Nikol'skaya) TI - On the Hodge, Tate and Mumford--Tate conjectures for fibre products of families of regular surfaces with geometric genus~1 JO - Modelirovanie i analiz informacionnyh sistem PY - 2018 SP - 312 EP - 322 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2018_25_3_a5/ LA - ru ID - MAIS_2018_25_3_a5 ER -
%0 Journal Article %A O. V. Oreshkina (Nikol'skaya) %T On the Hodge, Tate and Mumford--Tate conjectures for fibre products of families of regular surfaces with geometric genus~1 %J Modelirovanie i analiz informacionnyh sistem %D 2018 %P 312-322 %V 25 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2018_25_3_a5/ %G ru %F MAIS_2018_25_3_a5
O. V. Oreshkina (Nikol'skaya). On the Hodge, Tate and Mumford--Tate conjectures for fibre products of families of regular surfaces with geometric genus~1. Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 3, pp. 312-322. http://geodesic.mathdoc.fr/item/MAIS_2018_25_3_a5/
[1] Hodge W. V. D., “The topological invariants of algebraic varieties”, Proceedings of International Congress of Mathematicians, v. 1, 1952, 182–192 | MR | Zbl
[2] Tankeev S. G., “Cycles on simple abelian varieties of prime dimension”, Mathematics of the USSR–Izvestiya, 20:1 (1983), 157–171 | DOI | MR | MR | Zbl
[3] Gordon B. B., “A survey of the Hodge conjecture for Abelian varieties”, Appendix in: Lewis J.D.,, A survey of the Hodge conjecture, CRM Monograph Series, 10, 2 ed., American Mathematical Society, Providence, RI, 1999, 297–356 | MR
[4] Nikolskaya O. V., “On algebraic cycles on a fibre product of families of K3 surfaces”, Izv. Math., 77:1 (2013), 143–162 | DOI | DOI | MR | Zbl
[5] Nikolskaya O. V., “On the geometry of a smooth model of a fibre product of families of K3 surfaces”, Sbornik: Mathematics, 205:2 (2014), 269–276 | DOI | DOI | MR | Zbl
[6] Nikolskaya O. V. , “On algebraic cohomology classes on a smooth model of a fiber product of families of K3 surfaces”, Math. Notes, 96:5 (2014), 745–752 | DOI | DOI | MR | MR | Zbl
[7] Mamford D., “Families of abelian varieties”, Proc. of Symposium in Pure Math., IX, AMS, 1966, 347–351 | DOI | MR
[8] Serre J.-P. , “Representations l-adiques”, Algebraic number theory, International Symposium (Kyoto, 1976), ed. S. Iyanaga, Japan Society for the Promotion of Science, Tokyo, 1977, 177–193 | MR
[9] Tankeev S.G., “Surfaces of $K3$ type over number fields and the Mumford-Tate conjecture. II”, Russion Akad. Sci. Izv. Math., 59:3 (1995), 619–646 | DOI | MR | Zbl
[10] Tankeev S. G., “Cycles on simple abelian varieties of prime dimension over number fields”, Mathematics of the USSR-Izvestiya, 31:3 (1988), 527–540 | DOI | MR | Zbl
[11] Pink R., “l-adic algebraic monodromy group cocharacters, and the Mumford-Tate conjecture”, J. reine. angew. Math., 495 (1998), 187–237 | MR | Zbl
[12] Tate J., “Algebraic cycles and poles of zeta functions”, Arithmetical Algebraic Geometry, Proc. Conf. (Purdue Univ., 1963), Harper and Row, New York, 1965, 93–110 | MR
[13] Tate J., “Endomorphisms of abelian varieties over finite fields”, Invent. Math., 2 (1966), 134–144 | DOI | MR | Zbl
[14] Faltings G., “Endlichkeitssätze für abelsche Varietäten über Zahlkörpern”, Invent. Math., 73:3 (1983), 349–366 | DOI | MR | Zbl
[15] Tankeev S. G., “On cycles on abelian varieties of prime dimension over finite and number fields”, Mathematics of the USSR–Izvestiya, 22:2 (1984), 329–337 | DOI | MR | Zbl
[16] Moonen B., “On the Tate and Mumford-Tate conjectures in codimension one for varieties with $h^{2,0}=1$”, Duke Math. J., 166:4 (2017), 739–799 | DOI | MR | Zbl
[17] Pignatelli R., “Some (big) irreducible components of the moduli space of minimal surfaces of general type with $p_g=q=1$ and $K^2=4$”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei $(9)$ Mat. Appl., 20:3 (2009), 207–226 | DOI | MR | Zbl
[18] Zarhin Yu. G., “Hodge groups of $K3$ surfaces”, Journal für die reine und angewandte Mathematik, 341 (1983), 193–220 | MR
[19] Nikol'skaya O.V., “On algebraic cycles on fibre products of non-isotrivial families of regular surfaces with geometric genus 1”, Model. Anal. Inform. Sist., 23:4 (2016), 440–465 (in Russian) | MR
[20] Mustafin G.A., “Families of algebraic varieties and invariant cycles”, Mathematics of the USSR–Izvestiya, 27:2 (1986), 251–278 | DOI | MR | Zbl
[21] Deligne P., “Théorie de Hodge. III”, Inst. Hautes Études Sci. Publ. Math., 44 (1974), 5–77 | DOI | MR | Zbl
[22] Kempf G. et al., Toroidal embeddings, v. I, Lecture Notes in Mathematics, 339, Springer-Verlag, Berlin–New York, 1973 | DOI | MR | Zbl
[23] Kulikov Vic. S., “Degenerations of $K3$ surfaces and Enriques surfaces”, Math. USSR–Izv., 11:5 (1977), 957–988 | DOI | MR | Zbl
[24] Tankeev S. G., “The arithmetic and geometry of a generic hypersurface section”, Izv. Math., 66:2 (2002), 393–424 | DOI | DOI | MR | Zbl
[25] Kawamata Y., “Kodaira dimension of algebraic fiber spaces over curves”, Invent. Math., 66:1 (1982), 57–71 | DOI | MR | Zbl
[26] Birkar C., “Iitaka conjecture $C_{n,m}$ in dimension six”, Compositio Mathematica, 2009:6 (1979), 1442–1446 | DOI | MR