Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2018_25_3_a4, author = {M. V. Nevskii and A. Yu. Ukhalov}, title = {On optimal interpolation by linear functions on an $n$-dimensional cube}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {291--311}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2018_25_3_a4/} }
TY - JOUR AU - M. V. Nevskii AU - A. Yu. Ukhalov TI - On optimal interpolation by linear functions on an $n$-dimensional cube JO - Modelirovanie i analiz informacionnyh sistem PY - 2018 SP - 291 EP - 311 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2018_25_3_a4/ LA - ru ID - MAIS_2018_25_3_a4 ER -
M. V. Nevskii; A. Yu. Ukhalov. On optimal interpolation by linear functions on an $n$-dimensional cube. Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 3, pp. 291-311. http://geodesic.mathdoc.fr/item/MAIS_2018_25_3_a4/
[1] Esipova E. M., “Geometricheskie haracteristiki simpleksov, obladayuschih svoistvom ravnootsecheniya”, Sovremennye problemy matematiki i informatiki, 17, P. G. Demidov Yaroslavl State University, Yaroslavl, 2017, 49–61 (in Russian)
[2] Kudryavtsev I. S., Ozerova E. A., Ukhalov A. Yu., “Novye ocenki dlya norm minimalnyh proektorov”, Sovremennye problemy matematiki i informatiki, 17, P. G. Demidov Yaroslavl State University, Yaroslavl, 2017, 74–81 (in Russian)
[3] Nevskij M. V., “Orthogonal projection and minimal linear interpolation on an n-dimensional cube”, Modeling and Analysis of Information Systems, 14:3 (2007), 8–28 (in Russian)
[4] Nevskij M. V., Hlestkova I. V., “On minimal linear interpolation”, Sovremennye problemy matematiki i informatiki, 9, P. G. Demidov Yaroslavl State University, Yaroslavl, 2008, 31–37 (in Russian)
[5] Nevskij M. V., “On a certain relation for the minimal norm of an interpolational projection”, Modeling and Analysis of Information Systems, 16:1 (2009), 24–43 (in Russian)
[6] Nevskii M. V., “On a property of $n$-dimensional simplices”, Math. Notes, 87:4 (2010), 543–555 | DOI | DOI | MR | Zbl
[7] Nevskii M. V., Geometricheskie ocenki v polinomialnoy interpolyacii, P. G. Demidov Yaroslavl State University, Yaroslavl, 2012 (in Russian)
[8] Nevskii M. V., Ukhalov A. Yu., “On numerical charasteristics of a simplex and their estimates”, Modeling and Analysis of Information Systems, 23:5 (2016), 602–618 (in Russian) | MR
[9] Nevskii M. V., Ukhalov A. Yu., “New estimates of numerical values related to a simplex”, Modeling and Analysis of Information Systems, 24:1 (2017), 34–50 (in Russian) | MR
[10] Nevskii M. V., Ukhalov A. Yu., “On $n$-Dimensional Simplices Satisfying Inclusions $S\subset [0,1]^n\subset nS$”, Modeling and Analysis of Information Systems, 24:5 (2017), 578–595 (in Russian) | MR
[11] Nevskii M. V., Ukhalov A. Yu., “On Minimal Absorption Index for an $n$-Dimensional Simplex”, Modeling and Analysis of Information Systems, 25:1 (2018), 140–150 (in Russian)
[12] Szego G., Orthogonal Polynomials, American Mathematical Society, New York, 1959 (in English) | MR | Zbl
[13] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1979 (in Russian) | MR
[14] Hall M., Jr, Combinatorial theory, Blaisdall publishing company, Waltham (Massachusets)–Toronto–London, 1967 (in English) | MR | Zbl
[15] Butzer P. L., Schmidt M., Stark E. L., “Observations on the history of central $B$-splines”, Archive for History of Exact Sciences, 1988, no. 2, 137–156 | MR | Zbl
[16] Comtet L., “Permutations by number of rises; Eulerian numbers”, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Reidel, Dordrecht, Netherlands, 1974 | MR | Zbl
[17] Ehrenborg R., Readdy M., Steingrimsson E., “Mixed volumes and slices of the cube”, Journal of Combinatorial Theory. Series A, 81 (1998), 121–126 | DOI | MR | Zbl
[18] Graham R. L., Knuth D. E., Patashnik O., Concrete mathematics: A foundation for computer science, Addison–Wesley, Reading, MA, 1994 | MR | Zbl
[19] Hudelson M., Klee V., Larman D., “Largest $j$-simplices in $d$-cubes: some relatives of the Hadamard maximum determinant problem”, Linear Algebra Appl., 241–243 (1996), 519–598 | DOI | MR | Zbl
[20] de Laplace M., Oeuvres complétes, v. 7, Réédite par Gauthier–Villars, Paris, 1886
[21] Mangano S., Mathematica cookbook, O'Reilly Media Inc., Cambridge, 2010
[22] Nevskii M., “Properties of axial diameters of a simplex”, Discrete Comput. Geom., 46:2 (2011), 301–312 | DOI | MR | Zbl
[23] Scott P. R., “Lattices and convex sets in space”, Quart. J. Math. Oxford (2), 36 (1985), 359–362 | DOI | MR | Zbl
[24] Scott P. R., “Properties of axial diameters”, Bull. Austral. Math. Soc., 39 (1989), 329–333 | DOI | MR | Zbl
[25] Sommerfeld A., “Eine besonders anschauliche Ableitung des Gaussischen Fehlergesetzes”, Festschrift Ludwig Boltzmann gewidmet zum 60 Geburstage (20 Februar, 1904), Barth, Leipzig, 1904
[26] Stanley R. P., “Eulerian partitions of a unit hypercube”, Higher Combinatorics, Proceedings of the NATO Advanced Study Institute (Berlin, West Germany, September 1–10, 1976), Reidel, Dordrecht/Boston, 1977 | MR