On optimal interpolation by linear functions on an $n$-dimensional cube
Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 3, pp. 291-311
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $n\in{\mathbb N}$, and let $Q_n$ be the unit cube $[0,1]^n$.
By $C(Q_n)$ we denote the space of continuous functions
$f:Q_n\to{\mathbb R}$ with the norm
$\|f\|_{C(Q_n)}:=\max\limits_{x\in Q_n}|f(x)|,$ by
$\Pi_1\left({\mathbb R}^n\right)$ — the set of polynomials
of $n$ variables of degree $\leq 1$ (or linear functions).
Let $x^{(j)},$ $1\leq j\leq n+1,$ be the vertices of
$n$-dimnsional nondegenerate simplex $S\subset Q_n$.
An interpolation projector
$P:C(Q_n)\to \Pi_1({\mathbb R}^n)$ corresponding to the simplex
$S$ is defined by equalities
$Pf\left(x^{(j)}\right)=
f\left(x^{(j)}\right)$.
The norm of $P$ as an operator from $C(Q_n)$
to $C(Q_n)$ may be calculated by the formula
$\|P\|=\max\limits_{x\in\mathrm{ver}(Q_n)} \sum\limits_{j=1}^{n+1}
|\lambda_j(x)|$.
Here $\lambda_j$ are the basic Lagrange polynomials with respect to
$S,$
$\mathrm{ver}(Q_n)$ is the set of vertices of $Q_n$.
Let us denote by $\theta_n$ the minimal possible value of $\|P\|$.
Earlier, the first author proved various
relations and estimates for
values
$\|P\|$ and $\theta_n$, in particular, having geometric character.
The equivalence $\theta_n\asymp \sqrt{n}$ takes place.
For example, the appropriate, according to dimension $n$, inequalities may be written
in the form
$\frac{1}{4}\sqrt{n}$ $\theta_n$ $3\sqrt{n}$.
If the nodes of the projector $P^*$ coincide with vertices
of an arbitrary simplex with maximum possible volume, we have
$\|P^*\|\asymp\theta_n$.
When an Hadamard matrix of order $n+1$ exists, holds
$\theta_n\leq\sqrt{n+1}$.
In the paper, we give more precise upper bounds of numbers
$\theta_n$ for $21\leq n \leq 26$. These estimates were obtained
with the application of maximum volume simplices in the cube.
For constructing such simplices, we utilize maximum determinants containing
the elements $\pm 1$.
Also, we systematize and comment the best nowaday upper
and low estimates
of numbers
$\theta_n$ for a concrete $n$.
Keywords:
$n$-dimensional simplex, $n$-dimensional cube, projector, numerical methods.
Mots-clés : interpolation, norm
Mots-clés : interpolation, norm
@article{MAIS_2018_25_3_a4,
author = {M. V. Nevskii and A. Yu. Ukhalov},
title = {On optimal interpolation by linear functions on an $n$-dimensional cube},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {291--311},
publisher = {mathdoc},
volume = {25},
number = {3},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2018_25_3_a4/}
}
TY - JOUR AU - M. V. Nevskii AU - A. Yu. Ukhalov TI - On optimal interpolation by linear functions on an $n$-dimensional cube JO - Modelirovanie i analiz informacionnyh sistem PY - 2018 SP - 291 EP - 311 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2018_25_3_a4/ LA - ru ID - MAIS_2018_25_3_a4 ER -
M. V. Nevskii; A. Yu. Ukhalov. On optimal interpolation by linear functions on an $n$-dimensional cube. Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 3, pp. 291-311. http://geodesic.mathdoc.fr/item/MAIS_2018_25_3_a4/