Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2018_25_3_a3, author = {Yu. V. Kosolapov and A. N. Shigaev}, title = {The support splitting algorithm for induced codes}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {276--290}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2018_25_3_a3/} }
TY - JOUR AU - Yu. V. Kosolapov AU - A. N. Shigaev TI - The support splitting algorithm for induced codes JO - Modelirovanie i analiz informacionnyh sistem PY - 2018 SP - 276 EP - 290 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2018_25_3_a3/ LA - ru ID - MAIS_2018_25_3_a3 ER -
Yu. V. Kosolapov; A. N. Shigaev. The support splitting algorithm for induced codes. Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 3, pp. 276-290. http://geodesic.mathdoc.fr/item/MAIS_2018_25_3_a3/
[1] McEliece R. J., “A Public-Key Cryptosystem Based on Algebraic Coding Theory”, JPL Deep Space Network Progress Report, 1978, no. 42–44, January and February, 114–116
[2] Sendrier N., Tillich J. P., Code-Based Cryptography: New Security Solutions Against a Quantum Adversary, ERCIM News, , ERCIM, 2016 https://hal.archives-ouvertes.fr/hal-01410068/document
[3] Morelos-Zaragoza R. H., The Art of Error Correcting Coding, 2nd Edition, John Wiley Sons, Inc., 2006
[4] Sidel'nikov V. M., Shestakov S. O, “On an encoding system constructed on the basis of generalized Reed-Solomon codes”, Discrete Mathematics and Applications, 2:4 (1992), 439-444 | DOI | MR | Zbl
[5] Borodin M. A., Chizhov I. V., “Effective attack on the McEliece cryptosystem based on Reed-Muller codes”, Discrete Mathematics and Applications, 24:5 (2014), 273–280 | DOI | DOI | MR | Zbl
[6] Deundyak V. M., Kosolapov Yu. V., “Algorithms for majority decoding of group codes”, Model. Anal. Inform. Sist., 22:4 (2015), 464–482 (in Russian) | MR
[7] Deundyak V. M., Kosolapov Yu. V., “Kriptosistema na indutsirovannykh gruppovykh kodakh”, Model. i analiz inform. sistem, 23:2 (2016), 137–152 | MR
[8] Sendrier N., “Finding the Permutation Between Equivalent Linear Codes: The Support Splitting Algorithm”, IEEE Trans. on IT, 46:4 (2000), 1193–1203 | DOI | MR | Zbl
[9] Haily A., Harzalla D., “On Binary Linear Codes Whose Automorphism Group is Trivial”, Journal of Discrete Mathematical Sciences and Cryptography, 18:5 (2015), 495–512 | DOI | MR
[10] Lenstra A. K., Verheul E. R., “Selecting Cryptographic Key Sizes”, Journal of Cryptology, 14:4 (2001), 255–293 | DOI | MR | Zbl
[11] Deundyak V. M., Kosolapov Yu. V., “The use of the tensor product of Reed-Muller codes in asymmetric McEliece type cryptosystem and analysis of its resistance to attacks on the cryptogram”, Computational Technologies, 22:4 (2017), 43–60 (in Russian)
[12] Girault M., “A (non-practical) three-pass identification protocol using coding theory”, Advances in Cryptology, AUSCRYPT '90, Lecture Notes in Computer Science, 453, 1990, 265–272 | DOI
[13] Sendrier N., Simos D. E., “The Hardness of Code Equivalence over $\mathbb{F}_q$ and its Application to Code-based Cryptography”, Post-Quantum Cryptography, PQCrypto 2013, Lecture Notes in Computer Science, 7932, 2013, 203–216 | DOI | MR | Zbl