On estimation of an average time profit in probabilistic environmental and economic models
Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 3, pp. 257-267
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider environmental-economical models of optimal harvesting,
given by the differential equations with impulse action, which
depend on random parameters. We assume, that lengths of intervals $\theta_k$ between the
moments of impulses $\tau_k$ are random variables and the sizes of impulse
influence depend on random parameters $v_k, $ $k=1,2, \ldots $
One example of such objects is an equation with impulses, modelling
dynamics of the population subject to harvesting.
In the absence of harvesting, the population development is described by the
differential equation $ \dot x =g (x)$ and in time moments $ \tau_k $
some random share of resource $v_k, $ $k=1,2, \ldots$ is taken from population.
We can control gathering process so that to stop harvesting when its share will
appear big enough to keep possible
biggest the rest of a resource to increase the size of the following gathering.
Let the equation $ \dot x =g (x) $ have an asymptotic stable solution $ \varphi (t) \equiv K $ and the
interval $ (K_1, K_2) $ is the attraction area of the given solution
(here $0 \leqslant K_1 $).
We construct the control $u = (u_1, \dots, u_k, \dots), $ limiting a share of
harvesting resource at each moment of time $ \tau_k $, so that the quantity of the
remained resource, since some moment $ \tau _ {k_0}, $ would be not less than the given
value $x\in (K_1, K). $
For any $x\in (K_1, K) $ the estimations of average time profit, valid with
probability one, are received.
It is shown, that there is a unique $x ^*\in (K_1, K), $ at which the
lower estimation reaches the greatest value. Thus, we described the way of population
control at which the value of average time profit can be lower estimated with
probability 1 by the greatest number whenever possible.
Keywords:
model of a population subject to harvesting, average time profit
Mots-clés : optimal exploitation.
Mots-clés : optimal exploitation.
@article{MAIS_2018_25_3_a1,
author = {L. I. Rodina and I. I. Tyuteev},
title = {On estimation of an average time profit in probabilistic environmental and economic models},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {257--267},
publisher = {mathdoc},
volume = {25},
number = {3},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2018_25_3_a1/}
}
TY - JOUR AU - L. I. Rodina AU - I. I. Tyuteev TI - On estimation of an average time profit in probabilistic environmental and economic models JO - Modelirovanie i analiz informacionnyh sistem PY - 2018 SP - 257 EP - 267 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2018_25_3_a1/ LA - ru ID - MAIS_2018_25_3_a1 ER -
%0 Journal Article %A L. I. Rodina %A I. I. Tyuteev %T On estimation of an average time profit in probabilistic environmental and economic models %J Modelirovanie i analiz informacionnyh sistem %D 2018 %P 257-267 %V 25 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2018_25_3_a1/ %G ru %F MAIS_2018_25_3_a1
L. I. Rodina; I. I. Tyuteev. On estimation of an average time profit in probabilistic environmental and economic models. Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 3, pp. 257-267. http://geodesic.mathdoc.fr/item/MAIS_2018_25_3_a1/