Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2018_25_1_a6, author = {E. V. Grigoryeva and S. A. Kashchenko and D. V. Glazkov}, title = {Features of the local dynamics of the opto-electronic oscillator model with delay}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {71--82}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a6/} }
TY - JOUR AU - E. V. Grigoryeva AU - S. A. Kashchenko AU - D. V. Glazkov TI - Features of the local dynamics of the opto-electronic oscillator model with delay JO - Modelirovanie i analiz informacionnyh sistem PY - 2018 SP - 71 EP - 82 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a6/ LA - ru ID - MAIS_2018_25_1_a6 ER -
%0 Journal Article %A E. V. Grigoryeva %A S. A. Kashchenko %A D. V. Glazkov %T Features of the local dynamics of the opto-electronic oscillator model with delay %J Modelirovanie i analiz informacionnyh sistem %D 2018 %P 71-82 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a6/ %G ru %F MAIS_2018_25_1_a6
E. V. Grigoryeva; S. A. Kashchenko; D. V. Glazkov. Features of the local dynamics of the opto-electronic oscillator model with delay. Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 1, pp. 71-82. http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a6/
[1] Ikeda K., Matsumoto K., “High-dimensional chaotic behavior in systems with time-delayed feedback”, Physica D: Nonlinear Phenomena, 29:1–2 (1987), 223–235 | DOI
[2] Vallée R., Marriott C., “Analysis of an Nth-order nonlinear differential-delay equation”, Phys. Rev. A, 39:1 (1989), 197–205 | DOI | MR
[3] Kouomou C. et al., “Chaotic breathers in delayed electro-optical systems”, Phys. Rev. Lett., 95:20 (2005), 203903 | DOI
[4] Weicker L. et al., “Multirhythmicity in an optoelectronic oscillator with large delay”, Phys. Rev. E, 91:1 (2015), 012910 | DOI
[5] Weicker L. et al., “Strongly asymmetric square waves in time-delayed system”, Phys. Rev. E, 86:5 (2012), 055201(R) | DOI
[6] Peil M. et al., “Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic oscillators”, Phys. Rev. E, 79:2 (2009), 026208 | DOI
[7] Talla Mbé J.H. et al., “Mixed-mode oscillations in slow-fast delayed optoelectronic systems”, Phys. Rev. E, 91:1 (2015), 012902 | DOI | MR
[8] Marquez B.A. et al., “Interaction between Lienard and Ikeda dynamics in a nonlinear electro-optical oscillator with delayed bandpass feedback”, Phys. Rev. E, 94:6 (2016), 062208 | DOI
[9] Kaschenko I.S., Kaschenko S.A., “Local Dynamics of the Two-Component Singular Perturbed Systems of Parabolic Type”, International Journal of Bifurcation and Chaos, 25:11 (2015), 1550142 | DOI | MR
[10] Giacomelli G., Politi A., “Relationship between Delayed and Spatially Extended Dynamical Systems”, Phys. Rev. Lett., 76:15 (1996), 2686–2689 | DOI
[11] Yanchuk S., Giacomelli G., “Dynamical systems with multiple long-delayed feedbacks: Multiscale analysis and spatiotemporal equivalence”, Phys. Rev. E, 92:4 (2015), 042903 | DOI | MR
[12] Marconi M. et al., “Vectorial dissipative solitons in vertical-cavity surface-emitting lasers with delays”, Nature Photonics, 9:7 (2015), 450–455 | DOI
[13] Pimenov A. et al., “Dispersive time-delay dynamical systems”, Phys. Rev. Lett., 118:19 (2017), 193901 | DOI
[14] Bestehorn M., Grigorieva, E.V., Haken H., Kaschenko, S.A., “Order parameters for class-B lasers with a long time delayed feedback”, Physica D: Nonlinear Phenomena, 145:1–2 (2000), 110–129 | DOI | MR
[15] Grigorieva E.V., Kaschenko I.S., Kaschenko S.A., “Dynamics of Lang–Kobayashi equations with large control coefficient”, Nonlinear Phenomena in Complex Systems, 15:4 (2012), 403–409 | MR
[16] Akhromeeva T.S. i dr., Nestatsionarnye struktury i diffuzionnyy khaos, Nauka, M., 1992, 544 pp. | MR
[17] Kashchenko I.S., “Local dynamics of equations with large delay”, Comput. Math. and Math. Phys., 48:12, 2172–2181 | DOI | MR
[18] Kashchenko I. S., “Dynamics of an Equation with a Large Coefficient of Delay Control”, Doklady Mathematics, 83:2, 258–261 | DOI | MR