Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2018_25_1_a3, author = {S. V. Bytsyura and N. T. Levashova}, title = {Upper and lower solutions for the {FitzHugh--Nagumo} type system of equations}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {33--53}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a3/} }
TY - JOUR AU - S. V. Bytsyura AU - N. T. Levashova TI - Upper and lower solutions for the FitzHugh--Nagumo type system of equations JO - Modelirovanie i analiz informacionnyh sistem PY - 2018 SP - 33 EP - 53 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a3/ LA - ru ID - MAIS_2018_25_1_a3 ER -
%0 Journal Article %A S. V. Bytsyura %A N. T. Levashova %T Upper and lower solutions for the FitzHugh--Nagumo type system of equations %J Modelirovanie i analiz informacionnyh sistem %D 2018 %P 33-53 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a3/ %G ru %F MAIS_2018_25_1_a3
S. V. Bytsyura; N. T. Levashova. Upper and lower solutions for the FitzHugh--Nagumo type system of equations. Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 1, pp. 33-53. http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a3/
[1] Murray J. D., Mathematical Biology II: Spatial Models and Biomedical Applications, Third Edition, Springer, 2003 | MR
[2] FitzHugh R. A., “Impulses and Physiological States in Theoretical Models of Nerve Membrane”, Biophys. J., 1:6 (1961), 445–466 | DOI
[3] Sidorova A. E., Levashova N. T., Melnikova A. A., Yakovenko L. V, “A model of a human dominated urban ecosystem as an active medium”, Biophysics, 60:3 (2015), 466–473 | DOI
[4] Sidorova A. E., Levashova N. T., Melnikova A. A. et al., “Autowave self-organization in heterogeneous natural-anthropogenic ecosystems”, Moscow University Physics Bulletin, 71:6 (2016), 562–568 | DOI
[5] Sidorova A.E., Levashova N.T., Melnikova A.A., Semina A.E., “The Model of Structurization of Urban Ecosystems as the Process of Self-Organization in Active Media”, Math. Biol. Bioinf., 12:1 (2017), 186–197 (in Russian) | DOI
[6] Pao C. V., Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992 | MR
[7] Nefedov N. N., “An asymptotic method of differential inequalities for the investigation of periodic contrast structures: Existence, asymptotics, and stability”, Differential Equations, 36:2 (2000), 298–305 | DOI | MR | MR
[8] Volkov V. T., Nefedov N. N., “Development of the asymptotic method of differential inequalities for investigation of periodic contrast structures in reaction-diffusion equations”, Comput. Math. and Math. Phys., 46:4 (2006), 585–593 | DOI | MR
[9] Levashova N. T., Petrovskaya E. S., “Application of the differential inequalities method for justification of asymptotics of the solution of a two ordinary differential equations system in the form of a step-like contrast structure”, Memoirs of the Faculty of Physics, Lomonosov Moscow State University, 1:3(11) (2014), 1–13 (in Russian)
[10] Levashova N.T., Mel'nikova A.A., “Step-like contrast structure in a singularly perturbed system of parabolic equations”, Differential Equations, 51:3 (2015), 342–361 | DOI | DOI | MR
[11] Butuzov V. F., Levashova N. T., Mel'nikova A. A., “Steplike contrast structure in a singularly perturbed system of equations with different powers of small parameter”, Comput. Math. and Math. Phys., 52:11 (2012), 1526–1546 | DOI | MR
[12] Butuzov V. F., Levashova N. T., Mel'nikova A.A., “A Steplike Contrast Structure in a Singularly Perturbed System of Elliptic Equations”, Comput. Math. and Math. Phys., 53:9 (2013), 1239–1259 | DOI | DOI | MR
[13] Volpert A. I., Volpert V. A., Volpert V. A., Traveling wave solutions of parabolic systems, Translations of mathematical monographs, 140, American Mathematical Soc., 1994 | DOI | MR
[14] Davydova M. A., Zakharova S. A., Levashova N. T., “On one model problem for the reaction-diffusion-advection equation”, Comput. Math. and Math. Phys., 57:9 (2017), 1528–1539 | DOI | DOI | MR
[15] Butuzov V. F., Nedelko I. V., “Step-type contrast structure in a system of two singularly perturbed parabolic equations”, Matem. Mod., 13:12 (2001), 23–42 (in Russian) | MR
[16] Omel'chenko O., Recke L., “Boundary layer solutions to singularly perturbed problems via the implicit function theorem”, Asymptotic Analysis, 62:3–4 (2009), 207–225 | MR
[17] Palmer K.J., “Exponential dichotomies for almost periodic equations”, Proceedings of the American Mathematical Society, 101:2 (1987), 293–298 | DOI | MR