Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2018_25_1_a2, author = {E. A. Antipov and N. T. Levashova and N. N. Nefedov}, title = {Asymptotic approximation of the solution of the reaction-diffusion-advection equation with a nonlinear advective term}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {18--32}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a2/} }
TY - JOUR AU - E. A. Antipov AU - N. T. Levashova AU - N. N. Nefedov TI - Asymptotic approximation of the solution of the reaction-diffusion-advection equation with a nonlinear advective term JO - Modelirovanie i analiz informacionnyh sistem PY - 2018 SP - 18 EP - 32 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a2/ LA - ru ID - MAIS_2018_25_1_a2 ER -
%0 Journal Article %A E. A. Antipov %A N. T. Levashova %A N. N. Nefedov %T Asymptotic approximation of the solution of the reaction-diffusion-advection equation with a nonlinear advective term %J Modelirovanie i analiz informacionnyh sistem %D 2018 %P 18-32 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a2/ %G ru %F MAIS_2018_25_1_a2
E. A. Antipov; N. T. Levashova; N. N. Nefedov. Asymptotic approximation of the solution of the reaction-diffusion-advection equation with a nonlinear advective term. Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 1, pp. 18-32. http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a2/
[1] Nefedov N. N., “An asymptotic method of differential inequalities for the investigation of periodic contrast structures: Existence, asymptotics, and stability”, Differential Equations, 36:2 (2000), 298–305 | DOI | MR | MR
[2] Volkov V. T., Nefedov N. N., “Development of the asymptotic method of differential inequalities for investigation of periodic contrast structures in reaction-diffusion equations”, Comput. Math. Math. Phys., 46:4 (2006), 585–593 | DOI | MR
[3] Bozhevol'nov Yu. V., Nefedov N. N., “Front motion in the parabolic reaction-diffusion problem”, Comput. Math. Math. Phys., 50:2 (2010), 264–273 | DOI | MR
[4] Antipov E. A., Levashova N. T., Nefedov N.N., “Asymptotics of the front motion in the reaction-diffusion-advection problem”, Comput. Math. Math. Phys., 54:10 (2014), 1536–1549 | DOI | DOI | MR
[5] Nefedov N., Yagremtsev A., “On extension of asymptotic comparison principle for time periodic reaction-diffusion-advection systems with boundary and internal layers”, Lecture Notes in Computer Science, 9045, 2015, 62–71 | DOI | MR
[6] Volkov V. T., Nefedov N. N., Antipov E. A., “Asymptotic-numerical method for moving fronts in two-dimensional r-d-a problems”, Lecture Notes in Computer Science, 9045, 2015, 408–416 | DOI | MR
[7] Antipov E. A., Volkov V. T., Levashova N. T., Nefedov N. N., “Moving Front Solution of the Reaction-Diffusion Problem”, Modeling and Analysis of Information Systems, 24:3 (2017), 259–279 (in Russian) | MR
[8] Liberman A., Ivanov M., Peil O., Valiev D., Eriksson L., “Numerical studies of curved stationary flames in wide tubes”, Combustion Theory and Modelling, 7:4 (2003), 653-676 | DOI | MR
[9] Rudenko O. V., “Inhomogeneous burgers equation with modular nonlinearity: Excitation and evolution of high-intensity waves”, Doklady Mathematics, 95:3 (2017), 291–294 | DOI | DOI
[10] Lukyanenko D. V., Volkov V. T., Nefedov N. N., Recke L., Schneider K., “Analytic-numerical approach to solving singularly perturbed parabolic equations with the use of dynamic adapted meshes”, Modeling and Analysis of Information Systems, 23:3 (2016), 334–341 | DOI | MR
[11] Volkov V., Lukyanenko D., Nefedov N., “Asymptotic-numerical method for the location and dynamics of internal layers in singular perturbed parabolic problems”, Lecture Notes in Computer Science, 10187, 2017, 721–729 | DOI | MR
[12] Lukyanenko D., Nefedov N., Nikulin E., Volkov V., “Use of asymptotics for new dynamic adapted mesh construction for periodic solutions with an interior layer of reaction-diffusion-advection equations”, Lecture Notes in Computer Science, 10187, 2017, 107–118 | DOI | MR
[13] Lukyanenko D. V., Volkov V. T., Nefedov N. N., “Dynamically adapted mesh construction for the efficient numerical solution of a singular perturbed reaction-diffusion-advection equation”, Modeling and Analysis of Information Systems, 24:3 (2017), 322-338 | DOI | MR
[14] Vasil'eva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singuljarnyh vozmushhenij, Vysshaja shkola, M., 1990, 208 pp. (in Russian) | MR
[15] Nefedov N. N., Popov V. Ju., Volkov V. T., Obyknovennye differencialnye uravnenija, Kurs lekcij, Fizicheskij fakultet MGU im. M. V. Lomonosova, M., 2016, 200 pp. (in Russian)