Periodic variations of an autowave structure in two-dimensional system of parabolic equations
Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 1, pp. 112-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is aimed to study front solutions of a nonlinear system of parabolic equations in a two-dimensional region. The system can be considered as a mathematical model describing an abrupt change in physical characteristics of spatially heterogeneous media. We consider a system with small parameters raised to the different powers at a differential operator, that represents the difference of typical processes speeds for the system components. The study of the system is conducted by using the contrast structures theory methods, which allowed us to obtain conditions for the existence of front solutions contained in the neighborhood of a closed curve, to determine the front velocity depending on time and coordinate along the front curve, and to obtain the zero-order and the first-order terms of the asymptotic approximation to the solution. The scope of the system includes the description of autowave solutions in the field of ecology, biophysics, combustion physics and chemical kinetics. The approximate solution allows us to choose the model parameters so that the result corresponds to the processes observed, to explain and describe the characteristics of the solutions with sharp gradients, to create models with stable solutions and thereby to simplify the numerical analysis. Note that the numerical experiment for the two-dimensional spatial models requires a considerable amount of processing power and the use of parallel computing techniques and does not allow to effectively analyze and modify the model. In this paper, we obtain the asymptotic approximation that is to be justified, which can be done by the method of differential inequalities.
Mots-clés : singular perturbations, reaction-diffusion system.
Keywords: urbo ecosystem, autowave solution, internal transition layer
@article{MAIS_2018_25_1_a10,
     author = {A. A. Melnikova and N. N. Deryugina},
     title = {Periodic variations of an autowave structure in two-dimensional system of parabolic equations},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {112--124},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a10/}
}
TY  - JOUR
AU  - A. A. Melnikova
AU  - N. N. Deryugina
TI  - Periodic variations of an autowave structure in two-dimensional system of parabolic equations
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2018
SP  - 112
EP  - 124
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a10/
LA  - ru
ID  - MAIS_2018_25_1_a10
ER  - 
%0 Journal Article
%A A. A. Melnikova
%A N. N. Deryugina
%T Periodic variations of an autowave structure in two-dimensional system of parabolic equations
%J Modelirovanie i analiz informacionnyh sistem
%D 2018
%P 112-124
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a10/
%G ru
%F MAIS_2018_25_1_a10
A. A. Melnikova; N. N. Deryugina. Periodic variations of an autowave structure in two-dimensional system of parabolic equations. Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 1, pp. 112-124. http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a10/

[1] Vasil'eva A.B., Butuzov V.F., Asimptoticheskie metody v teorii singulyarnikh vozmuchenii, Vysh. shkola, M., 1990 (in Russian) | MR

[2] Butuzov V. F., Levashova N. T., Mel'nikova A.A., “Steplike contrast structure in a singularly perturbed system of equations with different powers of small parameter”, Comput. Math. and Math. Phys., 52:11 (2012), 1526–1546 | DOI | MR

[3] Levashova N. T., Mel'nikova A. A., “Step-like contrast structure in a singularly perturbed system of parabolic equations”, Differential Equations, 51:3 (2015), 342–361 | DOI | DOI | MR

[4] Levashova N. T., Nefedov N. N., Yagremtsev A. V., “Contrast structures in the reaction-diffusion-advection equations in the case of balanced advection”, Comput. Math. Math. Phys., 53:3 (2013), 273–283 | DOI | DOI | MR

[5] Nefedov N. N., Recke L., Schnieder K. R., “Existence and asymptotic stability of periodic solutions with an interior layer of reaction-advection-diffusion equations”, Journal of Mathematical Analysis and Applications, 405:1 (2013), 90–103 | DOI | MR

[6] Levashova N. T., Nefedov N. N., Orlov A. O., “Time-independent reaction-diffusion equation with a discontinuous reactive term”, Comput. Math. Math. Phys., 57:5 (2017), 854–866 | DOI | DOI | MR

[7] Antipov E. A., Volkov V. T., Levashova N. T., Nefedov N. N., “Moving front solution of the reaction-diffusion problem”, Model. Anal. Inform. Sist., 24:3 (2017), 259–279 (in Russian) | MR

[8] Butuzov V. F., Levashova N. T., Mel'nikova A.A., “A Steplike Contrast Structure in a Singularly Perturbed System of Elliptic Equations”, Comput. Math. and Math. Phys., 53:9 (2013), 1239–1259 | DOI | DOI | MR

[9] Levashova N., Melnikova A., Semina A., Sidorova A., “Autowave mechanisms of structure formation in urban ecosystems as the process of self-organization in active media”, Communication on Applied Mathematics and Computation, 31:1 (2017), 32–42

[10] Sidorova A. E., Levashova N. T., Melnikova A. A. et al., “Autowave self-organization in heterogeneous natural-anthropogenic ecosystems”, Moscow University Physics Bulletin, 71:6 (2016), 562–568 | DOI

[11] Melnikova A., Levashova N., Lukyanenko D., “Front Dynamics in an Activator-Inhibitor System of Equations”, Lecture Notes in Computer Science, 10187, 2017, 492–499 | DOI | MR

[12] Levashova N., Muhartova J., Davydova M., “The Use of Contrast Structures Theory for the Mathematical Modelling of the Wind Field in Spatially Heterogeneous Vegetation Cover”, Lecture Notes in Computer Science, 10187, 2017, 464–472 | DOI | MR

[13] Murray J., Mathematical Biology II: Spatial Models and Biomedical Applications, Springer-Verlag, New York, 2003 | MR