Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2018_25_1_a10, author = {A. A. Melnikova and N. N. Deryugina}, title = {Periodic variations of an autowave structure in two-dimensional system of parabolic equations}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {112--124}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a10/} }
TY - JOUR AU - A. A. Melnikova AU - N. N. Deryugina TI - Periodic variations of an autowave structure in two-dimensional system of parabolic equations JO - Modelirovanie i analiz informacionnyh sistem PY - 2018 SP - 112 EP - 124 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a10/ LA - ru ID - MAIS_2018_25_1_a10 ER -
%0 Journal Article %A A. A. Melnikova %A N. N. Deryugina %T Periodic variations of an autowave structure in two-dimensional system of parabolic equations %J Modelirovanie i analiz informacionnyh sistem %D 2018 %P 112-124 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a10/ %G ru %F MAIS_2018_25_1_a10
A. A. Melnikova; N. N. Deryugina. Periodic variations of an autowave structure in two-dimensional system of parabolic equations. Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 1, pp. 112-124. http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a10/
[1] Vasil'eva A.B., Butuzov V.F., Asimptoticheskie metody v teorii singulyarnikh vozmuchenii, Vysh. shkola, M., 1990 (in Russian) | MR
[2] Butuzov V. F., Levashova N. T., Mel'nikova A.A., “Steplike contrast structure in a singularly perturbed system of equations with different powers of small parameter”, Comput. Math. and Math. Phys., 52:11 (2012), 1526–1546 | DOI | MR
[3] Levashova N. T., Mel'nikova A. A., “Step-like contrast structure in a singularly perturbed system of parabolic equations”, Differential Equations, 51:3 (2015), 342–361 | DOI | DOI | MR
[4] Levashova N. T., Nefedov N. N., Yagremtsev A. V., “Contrast structures in the reaction-diffusion-advection equations in the case of balanced advection”, Comput. Math. Math. Phys., 53:3 (2013), 273–283 | DOI | DOI | MR
[5] Nefedov N. N., Recke L., Schnieder K. R., “Existence and asymptotic stability of periodic solutions with an interior layer of reaction-advection-diffusion equations”, Journal of Mathematical Analysis and Applications, 405:1 (2013), 90–103 | DOI | MR
[6] Levashova N. T., Nefedov N. N., Orlov A. O., “Time-independent reaction-diffusion equation with a discontinuous reactive term”, Comput. Math. Math. Phys., 57:5 (2017), 854–866 | DOI | DOI | MR
[7] Antipov E. A., Volkov V. T., Levashova N. T., Nefedov N. N., “Moving front solution of the reaction-diffusion problem”, Model. Anal. Inform. Sist., 24:3 (2017), 259–279 (in Russian) | MR
[8] Butuzov V. F., Levashova N. T., Mel'nikova A.A., “A Steplike Contrast Structure in a Singularly Perturbed System of Elliptic Equations”, Comput. Math. and Math. Phys., 53:9 (2013), 1239–1259 | DOI | DOI | MR
[9] Levashova N., Melnikova A., Semina A., Sidorova A., “Autowave mechanisms of structure formation in urban ecosystems as the process of self-organization in active media”, Communication on Applied Mathematics and Computation, 31:1 (2017), 32–42
[10] Sidorova A. E., Levashova N. T., Melnikova A. A. et al., “Autowave self-organization in heterogeneous natural-anthropogenic ecosystems”, Moscow University Physics Bulletin, 71:6 (2016), 562–568 | DOI
[11] Melnikova A., Levashova N., Lukyanenko D., “Front Dynamics in an Activator-Inhibitor System of Equations”, Lecture Notes in Computer Science, 10187, 2017, 492–499 | DOI | MR
[12] Levashova N., Muhartova J., Davydova M., “The Use of Contrast Structures Theory for the Mathematical Modelling of the Wind Field in Spatially Heterogeneous Vegetation Cover”, Lecture Notes in Computer Science, 10187, 2017, 464–472 | DOI | MR
[13] Murray J., Mathematical Biology II: Spatial Models and Biomedical Applications, Springer-Verlag, New York, 2003 | MR