Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2017_24_6_a9, author = {N. S. Lagutina and K. V. Lagutina and I. A. Shchitov and I. V. Paramonov}, title = {Analysis of influence of different relations types on the quality of thesaurus application to text classification problems}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {772--787}, publisher = {mathdoc}, volume = {24}, number = {6}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_6_a9/} }
TY - JOUR AU - N. S. Lagutina AU - K. V. Lagutina AU - I. A. Shchitov AU - I. V. Paramonov TI - Analysis of influence of different relations types on the quality of thesaurus application to text classification problems JO - Modelirovanie i analiz informacionnyh sistem PY - 2017 SP - 772 EP - 787 VL - 24 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2017_24_6_a9/ LA - ru ID - MAIS_2017_24_6_a9 ER -
%0 Journal Article %A N. S. Lagutina %A K. V. Lagutina %A I. A. Shchitov %A I. V. Paramonov %T Analysis of influence of different relations types on the quality of thesaurus application to text classification problems %J Modelirovanie i analiz informacionnyh sistem %D 2017 %P 772-787 %V 24 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2017_24_6_a9/ %G ru %F MAIS_2017_24_6_a9
N. S. Lagutina; K. V. Lagutina; I. A. Shchitov; I. V. Paramonov. Analysis of influence of different relations types on the quality of thesaurus application to text classification problems. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 6, pp. 772-787. http://geodesic.mathdoc.fr/item/MAIS_2017_24_6_a9/
[1] Masterman M., “Semantic message detection for machine translation, using an interlingua”, Proc. 1961 International Conf. on Machine Translation, 1961, 438–475
[2] Loukachevitch N., Dobrov B., “The Sociopolitical Thesaurus as a resource for automatic document processing in Russian”, Terminology, 21:2 (2015), 237–262 | DOI
[3] Aitchison J., Clarke S.D., “The thesaurus: a historical viewpoint, with a look to the future”, Cataloging and classification quarterly, 37:3–4 (2004), 5–21 | DOI
[4] Lukashevich N. V., Tezaurusy v zadachah informacionnogo poiska, Izdatelstvo MGU, M., 2011, 512 pp. (in Russian)
[5] Willis C., Losee R., “A random walk on an ontology: Using thesaurus structure for automatic subject indexing”, Journal of the American Society for Information Science and Technology, 64:7 (2013), 1330–1344 | DOI
[6] Vállez M., Pedraza-Jiménez R., Codina L., Blanco S., Rovira C., “A semi-automatic indexing system based on embedded information in HTML documents”, Library Hi Tech, 33:2 (2015), 195–210 | DOI
[7] Loukachevitch N., Nokel M., Ivanov K., Combining Thesaurus Knowledge and Probabilistic Topic Models, 2017, arXiv: 1707.09816
[8] Sanchez-Pi N., Martí L. Garcia A. C. B., “Improving ontology-based text classification: An occupational health and security application”, Journal of Applied Logic, 17 (2016), 48–58 | DOI | MR | Zbl
[9] Bollegala D., Weir D., Carroll J., “Cross-domain sentiment classification using a sentiment sensitive thesaurus”, IEEE transactions on knowledge and data engineering, 25:8 (2013), 1719–1731 | DOI
[10] Sparck Jones K., Walker S., Robertson S.E., “A probabilistic model of information retrieval: development and comparative experiments: Part 2”, Information Processing and Management, 36:6 (2000), 809–840 | DOI
[11] Lagutina N. S., Lagutina K. V., Mamedov E. I., Paramonov I. V., “Methodological aspects of semantic relationship extraction for automatic thesaurus generation”, Modeling and Analysis of Information Systems, 23:6 (2016), 826–840 (in Russian) | MR
[12] Mihalcea R., Tarau P., “TextRank: Bringing order into texts”, Proceedings of Empirical Methods in Natural Language Processing, EMNLP 2004 (Barcelona, Spain), ACL, 404–411
[13] Trieschnigg D., Pezik P., Lee V., De Jong F., Kraaij W., Rebholz-Schuhmann D., “MeSH Up: effective MeSH text classification for improved document retrieval”, Bioinformatics, 25:11 (2009), 1412–1418 | DOI
[14] Aggarwal C., Zhai C., “A survey of text classification algorithms”, Mining text data, Springer-Verlag, New York, 2012, 163–222 | DOI | MR
[15] Grimmer J., Stewart B., “Text as data: The promise and pitfalls of automatic content analysis methods for political texts”, Political analysis, 21:3 (2013), 267–297 | DOI
[16] Ravi K., Ravi V., “A survey on opinion mining and sentiment analysis: tasks, approaches and applications”, Knowledge-Based Systems, 89 (2015), 14–46 | DOI
[17] Junker M., Hoch R., Dengel A., “On the evaluation of document analysis components by recall, precision, and accuracy”, Proceedings of the Fifth International Conference on Document Analysis and Recognition, IEEE, 1999, 713–716 | DOI