Synthesis of control and state observer for weakly nonlinear systems based on the pseudo-linearization technique
Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 6, pp. 802-810.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, an approach to the construction of nonlinear output tracking control on a finite time interval for a class of weakly nonlinear systems with state-dependent coefficients is considered. The proposed method of control synthesis consists of two main stages. At the first stage, a nonlinear state feedback regulator is constructed by using a previously proposed control algorithm based on the State Dependent Riccati Equation (SDRE). At the second stage, the problem of full-order observer construction is formulated and then it is reduced to the differential game problem. The form of its solution is obtained with the help of the guaranteed (minimax) control principle, which allows to find the best observer coefficients with respect to a given functional considering the worst-case uncertainty realization. The form of the obtained equations made it possible to use the algorithm from the first stage to determine the observer matrix. The proposed approach is characterized by the nonapplicability of the estimation and control separation principle used for linear systems, since the matrix of observer coefficients turned out to be dependent on the feedback coefficients matrix. The use of numerical-analytical procedures for determination of observer and feedback coefficients matrices significantly reduces the computational complexity of the control algorithm.
Keywords: tracking problem, nonlinear control, state-dependent Riccati equation, minimax control.
@article{MAIS_2017_24_6_a11,
     author = {D. A. Makarov},
     title = {Synthesis of control and state observer for weakly nonlinear systems based on the pseudo-linearization technique},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {802--810},
     publisher = {mathdoc},
     volume = {24},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_6_a11/}
}
TY  - JOUR
AU  - D. A. Makarov
TI  - Synthesis of control and state observer for weakly nonlinear systems based on the pseudo-linearization technique
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2017
SP  - 802
EP  - 810
VL  - 24
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2017_24_6_a11/
LA  - ru
ID  - MAIS_2017_24_6_a11
ER  - 
%0 Journal Article
%A D. A. Makarov
%T Synthesis of control and state observer for weakly nonlinear systems based on the pseudo-linearization technique
%J Modelirovanie i analiz informacionnyh sistem
%D 2017
%P 802-810
%V 24
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2017_24_6_a11/
%G ru
%F MAIS_2017_24_6_a11
D. A. Makarov. Synthesis of control and state observer for weakly nonlinear systems based on the pseudo-linearization technique. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 6, pp. 802-810. http://geodesic.mathdoc.fr/item/MAIS_2017_24_6_a11/

[1] Cimen T., “Survey of state-dependent Riccati equation in nonlinear optimal feedback control synthesis”, Journal of Guidance, Control, and Dynamics, 35:4 (2012), 1025–1047 | DOI

[2] Cloutier J. R., “State-Dependent Riccati Equation Techniques: An Overview”, Proc. American Control Conference, v. 2, 1997, 932–936

[3] Makarov D. A., “A nonlinear approach to a feedback control design for a tracking state-dependent problem. Part I. An algorithm”, Information Technologies and Computing Systems, 2017, no. 3, 10–19 (in Russian)

[4] Afanasiev V. N., Dinamicheskie sistemy upravlenija s nepolnoj informaciej: algoritmicheskoe konstruirovanie, URSS, KomKniga, M., 2007, 214 pp. (in Russian)

[5] Afanas’ev V. N., “Guaranteed control concept for uncertain objects”, Journal of Computer and Systems Sciences International, 49:1 (2010), 22–29 | DOI | MR | Zbl

[6] Afanas'ev V. N., “Extended linearization method in the problem of uncertain nonlinear object control”, Sovremennye problemy prikladnoy matematiki, informatiki, avtomatizatsii i upravleniya, IPI RAN, M., 2014, 47–54 (in Russian)

[7] Pupkov K. A., Egupov N. D. (red.), Metody klassicheskoj i sovremennoj teorii avtomaticheskogo upravlenija, Uchebnik v 5 t., v. 4, Teorija optimizacii sistem avtomaticheskogo upravlenija, 2-e izd., pererab. i dop., Izdatelstvo MGTU im. Baumana, M., 2004, 742 pp. (in Russian)

[8] Kwwakernaak H., Sivan R., Linear optimal control systems, Wiley-Interscience, New York, 1972 | MR

[9] Pervozvanskij A. A., Kurs teorii avtomaticheskogo upravlenija, Nauka, M., 1986, 616 pp. (in Russian)