Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2017_24_5_a6, author = {A. V. Sekatskaya}, title = {Bifurcations of spatially inhomogeneous solutions of a boundary value problem for the generalized {Kuramoto--Syvashinsky} equation}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {615--628}, publisher = {mathdoc}, volume = {24}, number = {5}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a6/} }
TY - JOUR AU - A. V. Sekatskaya TI - Bifurcations of spatially inhomogeneous solutions of a boundary value problem for the generalized Kuramoto--Syvashinsky equation JO - Modelirovanie i analiz informacionnyh sistem PY - 2017 SP - 615 EP - 628 VL - 24 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a6/ LA - ru ID - MAIS_2017_24_5_a6 ER -
%0 Journal Article %A A. V. Sekatskaya %T Bifurcations of spatially inhomogeneous solutions of a boundary value problem for the generalized Kuramoto--Syvashinsky equation %J Modelirovanie i analiz informacionnyh sistem %D 2017 %P 615-628 %V 24 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a6/ %G ru %F MAIS_2017_24_5_a6
A. V. Sekatskaya. Bifurcations of spatially inhomogeneous solutions of a boundary value problem for the generalized Kuramoto--Syvashinsky equation. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 5, pp. 615-628. http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a6/
[1] Sigmund P., “A mechanism of surface micro-rougening by ion bombardment”, J. Mat. Sci., 8 (1973), 1545 | DOI
[2] Sigmund P., “Theory of sputtering. Sputtering yield of amorphous and polycrystalline targets”, Phys. Rev., 184:2 (1969), 383–416 | DOI
[3] Syvashinsky G. I., “Weak Turbulence in Periodic Flow”, Physica D: Nonlinear Phenomena, 17:2 (1985), 243–255 | DOI | MR
[4] Kuramoto Y., Chemical oscillations, waves and turbulence, Springer, Berlin, 1984, 136 pp. | MR | Zbl
[5] Bradley R. M., Harper J. M. E., “Theory of Ripple Topography by ion bombardment”, J. Vac. Tech. A, 6 (1988), 2390–2395 | DOI
[6] Kudryashov N. A., Ryabov P. N., Strikhanov M. N., “Chislennoe modelirovanie formirovaniya nanostruktur na poverkhnosti ploskikh podlozhek pri ionnoy bombardirovke”, Yadernaya fizika i inzhiniring, 1:2 (2010), 151–158 (in Russian)
[7] Kudryashov N. A., Ryabov P. N., Fedyanin T. E., “On self-organization processes of nanostructures on semiconductor surface by ion bombardment”, Matem. Mod., 24:12 (2012), 23–28 (in Russian) | Zbl
[8] Carter G., “The physics and applications of ion beam erosion”, J. Phys. D.: Appl. Phys., 34 (2001) | DOI
[9] Sigmund P., “Sputtering by ion bombardment theoretical concepts”, Sputtering by particle bombardment, Springer-Verlag, Berlin, 1981, 9–71 | DOI
[10] Funktsionalnyy analiz. Spravochnaya matematicheskaya biblioteka, Nauka, M., 1972, 544 pp. (in Russian)
[11] Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, 1950, 367 pp. (in Russian) | MR
[12] Kulikov A. N., Integralnye mnogoobraziya nelineynykh avtonomnykh differentsialnykh uravneniy v gilbertovom prostranstve, 1991, 24 pp. (in Russian)
[13] Mishchenko E. F., Sadovnichiy V. A., Kolesov A. Yu., Rozov N. Kh., Avtovolnovye protsessy v nelineynykh sredakh s diffuziey, Fizmatlit, 2005, 431 pp. (in Russian) | MR
[14] Lyusternik L. A., Sobolev V. I., Elementy funktsional'nogo analiza, Gos.izd-vo tekhniko-teoreticheskoy literatury, M.–L., 1951, 360 pp. (in Russian) | MR
[15] Kulikov A. N., Kulikov D. A., “Formation of wavy nanostructures on the surface of flat substrates by ion bombardment”, Comput. Math. and Math. Phys., 52:5 (2012), 800–814 | DOI | MR | Zbl
[16] Kulikov A. N., Kulikov D. A., Rudyy A. S., “Bifurcation of the nanostructures induced by ion bombardment”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2011, 86–99 (in Russian) | Zbl
[17] Kulikov A. N., Kulikov D. A., “Bifurcations in a boundary-value problem of nanoelectronics”, Journal of Mathematical Sciences, 208:2 (2015), 211–221 | DOI | MR | Zbl
[18] Kulikov A. N., Kulikov D. A., “Bifurcation in Kuramoto–Syvashinsky equation”, Pliska Stud. Math., 25 (2015), 81–90 | MR | Zbl