On $n$-dimensional simplices satisfying inclusions $S\subset [0,1]^n\subset nS$
Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 5, pp. 578-595.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $n\in{\mathbb N}$, $Q_n=[0,1]^n.$ For a nondegenerate simplex $S\subset {\mathbb R}^n$, by $\sigma S$ we denote the homothetic image of $S$ with the center of homothety in the center of gravity of $S$ and ratio of homothety $\sigma$. By $d_i(S)$ we mean the $i$-th axial diameter of $S$, i. e. the maximum length of a line segment in $S$ parallel to the $i$th coordinate axis. Let $\xi(S)=\min \{\sigma\geq 1: Q_n\subset \sigma S\},$ $\xi_n=\min \{ \xi(S): \, S\subset Q_n \}.$ By $\alpha(S)$ we denote the minimal $\sigma>0$ such that $Q_n$ is contained in a translate of simplex $\sigma S$. Consider $(n+1)\times(n+1)$-matrix $\mathbf{A}$ with the rows containing coordinates of vertices of $S$; the last column of $\mathbf{A}$ consists of 1's. Put $\mathbf{A}^{-1}$ $=(l_{ij})$. Denote by $\lambda_j$ a linear function on ${\mathbb R}^n$ with coefficients from the $j$-th column of $\mathbf{A}^{-1}$, i. e. $\lambda_j(x)= l_{1j}x_1+\ldots+ l_{nj}x_n+l_{n+1,j}.$ Earlier, the first author proved the equalities $ \frac{1}{d_i(S)}=\frac{1}{2}\sum_{j=1}^{n+1} \left|l_{ij}\right|, \ \alpha(S) =\sum_{i=1}^n\frac{1}{d_i(S)}.$ In the present paper, we consider the case $S\subset Q_n$. Then all the $d_i(S)\leq 1$, therefore, $n\leq \alpha(S)\leq \xi(S).$ If for some simplex $S^\prime\subset Q_n$ holds $\xi(S^\prime)=n,$ then $\xi_n=n$, $\xi(S^\prime)=\alpha(S^\prime)$, and $d_i(S^\prime)=1$. However, such simplices $S^\prime$ do not exist for all the dimensions $n$. The first value of $n$ with such a property is equal to $2$. For each 2-dimensional simplex, $\xi(S)\geq \xi_2=1+\frac{3\sqrt{5}}{5}=2.34 \ldots>2$. We have an estimate $n\leq \xi_n$. The equality $\xi_n=n$ takes place if there exists an Hadamard matrix of order $n+1$. Further study showed that $\xi_n=n$ also for some other $n$. In particular, simplices with the condition $S\subset Q_n\subset nS$ were built for any odd $n$ in the interval $1\leq n\leq 11$. In the first part of the paper, we present some new results concerning simplices with such a condition. If $S\subset Q_n\subset nS$, the center of gravity of $S$ coincide, with the center of $Q_n$. We prove that $\sum_{j=1}^{n+1} |l_{ij}|=2 \quad (1\leq i\leq n), \ \sum_{i=1}^{n} |l_{ij}|=\frac{2n}{n+1} \ (1\leq j\leq n+1).$ Also we give some corollaries. In the second part of the paper, we consider the following conjecture. Let for simplex $S\subset Q_n$ an equality $\xi(S)=\xi_n$ holds. Then $(n-1)$-dimensional hyperplanes containing the faces of $S$ cut from the cube $Q_n$ the equal-sized parts. Though it is true for $n=2$ and $n=3$, in the general case this conjecture is not valid.
Keywords: $n$-dimensional simplex, $n$-dimensional cube, homothety, axial diameter, interpolation, projection, numerical methods.
@article{MAIS_2017_24_5_a4,
     author = {M. V. Nevskii and A. Yu. Ukhalov},
     title = {On $n$-dimensional simplices satisfying inclusions $S\subset [0,1]^n\subset nS$},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {578--595},
     publisher = {mathdoc},
     volume = {24},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a4/}
}
TY  - JOUR
AU  - M. V. Nevskii
AU  - A. Yu. Ukhalov
TI  - On $n$-dimensional simplices satisfying inclusions $S\subset [0,1]^n\subset nS$
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2017
SP  - 578
EP  - 595
VL  - 24
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a4/
LA  - ru
ID  - MAIS_2017_24_5_a4
ER  - 
%0 Journal Article
%A M. V. Nevskii
%A A. Yu. Ukhalov
%T On $n$-dimensional simplices satisfying inclusions $S\subset [0,1]^n\subset nS$
%J Modelirovanie i analiz informacionnyh sistem
%D 2017
%P 578-595
%V 24
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a4/
%G ru
%F MAIS_2017_24_5_a4
M. V. Nevskii; A. Yu. Ukhalov. On $n$-dimensional simplices satisfying inclusions $S\subset [0,1]^n\subset nS$. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 5, pp. 578-595. http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a4/

[1] Klimov V. S., Ukhalov A. Yu., Reshenie zadach matematicheskogo analiza s ispolzovaniem sistem kompyuternoi matematiki, P. G. Demidov Yaroslavl State University, Yaroslavl, 2014, 96 pp. (in Russian)

[2] Malyshev F. M., “Family of equal-sized n-dimensional polyhedra satisfying Cavalieri's principle”, Math. Notes, 97:1 (2015), 213–229 | DOI | DOI | MR | MR | Zbl

[3] Nevskij M. V., “Inequalities for the norms of interpolating projections”, Modeling and Analysis of Information Systems, 15:3 (2008), 28–37 (in Russian)

[4] Nevskij M. V., “On a certain relation for the minimal norm of an interpolational projection”, Modeling and Analysis of Information Systems, 16:1 (2009), 24–43 (in Russian)

[5] Nevskii M. V., “On a property of $n$-dimensional simplices”, Math. Notes, 87:4 (2010), 543–555 | DOI | DOI | MR | Zbl

[6] Nevskii M. V., Geometricheskie ocenki v polinomialnoy interpolyacii, P. G. Demidov Yaroslavl State University, Yaroslavl, 2012 (in Russian)

[7] Nevskii M. V., “Computation of the longest segment of a given direction in a simplex”, Journal of Math. Sciences, 203:6 (2014), 851–854 | DOI | MR | Zbl

[8] Nevskii M. V., Ukhalov A. Yu., “On numerical charasteristics of a simplex and their estimates”, Modeling and Analysis of Information Systems, 23:5 (2016), 602–618 (in Russian) | MR

[9] Nevskii M. V., Ukhalov A. Yu., “New estimates of numerical values related to a simplex”, Modeling and Analysis of Information Systems, 24:1 (2017), 94–110 (in Russian) | MR

[10] Hall M., Jr, Combinatorial theory, Blaisdall publishing company, Waltham (Massachusets)–Toronto–London, 1967 (in English) | MR | MR | Zbl

[11] Frank R., Riede H., “Hyperplane sections of the n-dimensional cube”, Amer. Math. Monthly, 119:10 (2012), 868–872 | DOI | MR | Zbl

[12] Hudelson M., Klee V., Larman D., “Largest $j$-simplices in $d$-cubes: some relatives of the Hadamard maximum determinant problem”, Linear Algebra Appl., 241–243 (1996), 519–598 | DOI | MR | Zbl

[13] Lassak M., “Parallelotopes of maximum volume in a simplex”, Discrete Comput. Geom., 21 (1999), 449–462 | DOI | MR | Zbl

[14] Mangano S., Mathematica cookbook, O'Reilly Media Inc., Cambridge, 2010

[15] Nevskii M., “Properties of axial diameters of a simplex”, Discrete Comput. Geom., 46:2 (2011), 301–312 | DOI | MR | Zbl

[16] Scott P. R., “Lattices and convex sets in space”, Quart. J. Math. Oxford (2), 36 (1985), 359–362 | DOI | MR | Zbl

[17] Scott P. R., “Properties of axial diameters”, Bull. Austral. Math. Soc., 39 (1989), 329–333 | DOI | MR | Zbl