Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2017_24_5_a4, author = {M. V. Nevskii and A. Yu. Ukhalov}, title = {On $n$-dimensional simplices satisfying inclusions $S\subset [0,1]^n\subset nS$}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {578--595}, publisher = {mathdoc}, volume = {24}, number = {5}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a4/} }
TY - JOUR AU - M. V. Nevskii AU - A. Yu. Ukhalov TI - On $n$-dimensional simplices satisfying inclusions $S\subset [0,1]^n\subset nS$ JO - Modelirovanie i analiz informacionnyh sistem PY - 2017 SP - 578 EP - 595 VL - 24 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a4/ LA - ru ID - MAIS_2017_24_5_a4 ER -
%0 Journal Article %A M. V. Nevskii %A A. Yu. Ukhalov %T On $n$-dimensional simplices satisfying inclusions $S\subset [0,1]^n\subset nS$ %J Modelirovanie i analiz informacionnyh sistem %D 2017 %P 578-595 %V 24 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a4/ %G ru %F MAIS_2017_24_5_a4
M. V. Nevskii; A. Yu. Ukhalov. On $n$-dimensional simplices satisfying inclusions $S\subset [0,1]^n\subset nS$. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 5, pp. 578-595. http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a4/
[1] Klimov V. S., Ukhalov A. Yu., Reshenie zadach matematicheskogo analiza s ispolzovaniem sistem kompyuternoi matematiki, P. G. Demidov Yaroslavl State University, Yaroslavl, 2014, 96 pp. (in Russian)
[2] Malyshev F. M., “Family of equal-sized n-dimensional polyhedra satisfying Cavalieri's principle”, Math. Notes, 97:1 (2015), 213–229 | DOI | DOI | MR | MR | Zbl
[3] Nevskij M. V., “Inequalities for the norms of interpolating projections”, Modeling and Analysis of Information Systems, 15:3 (2008), 28–37 (in Russian)
[4] Nevskij M. V., “On a certain relation for the minimal norm of an interpolational projection”, Modeling and Analysis of Information Systems, 16:1 (2009), 24–43 (in Russian)
[5] Nevskii M. V., “On a property of $n$-dimensional simplices”, Math. Notes, 87:4 (2010), 543–555 | DOI | DOI | MR | Zbl
[6] Nevskii M. V., Geometricheskie ocenki v polinomialnoy interpolyacii, P. G. Demidov Yaroslavl State University, Yaroslavl, 2012 (in Russian)
[7] Nevskii M. V., “Computation of the longest segment of a given direction in a simplex”, Journal of Math. Sciences, 203:6 (2014), 851–854 | DOI | MR | Zbl
[8] Nevskii M. V., Ukhalov A. Yu., “On numerical charasteristics of a simplex and their estimates”, Modeling and Analysis of Information Systems, 23:5 (2016), 602–618 (in Russian) | MR
[9] Nevskii M. V., Ukhalov A. Yu., “New estimates of numerical values related to a simplex”, Modeling and Analysis of Information Systems, 24:1 (2017), 94–110 (in Russian) | MR
[10] Hall M., Jr, Combinatorial theory, Blaisdall publishing company, Waltham (Massachusets)–Toronto–London, 1967 (in English) | MR | MR | Zbl
[11] Frank R., Riede H., “Hyperplane sections of the n-dimensional cube”, Amer. Math. Monthly, 119:10 (2012), 868–872 | DOI | MR | Zbl
[12] Hudelson M., Klee V., Larman D., “Largest $j$-simplices in $d$-cubes: some relatives of the Hadamard maximum determinant problem”, Linear Algebra Appl., 241–243 (1996), 519–598 | DOI | MR | Zbl
[13] Lassak M., “Parallelotopes of maximum volume in a simplex”, Discrete Comput. Geom., 21 (1999), 449–462 | DOI | MR | Zbl
[14] Mangano S., Mathematica cookbook, O'Reilly Media Inc., Cambridge, 2010
[15] Nevskii M., “Properties of axial diameters of a simplex”, Discrete Comput. Geom., 46:2 (2011), 301–312 | DOI | MR | Zbl
[16] Scott P. R., “Lattices and convex sets in space”, Quart. J. Math. Oxford (2), 36 (1985), 359–362 | DOI | MR | Zbl
[17] Scott P. R., “Properties of axial diameters”, Bull. Austral. Math. Soc., 39 (1989), 329–333 | DOI | MR | Zbl