Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2017_24_5_a3, author = {V. S. Klimov}, title = {On locally convex curves}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {567--577}, publisher = {mathdoc}, volume = {24}, number = {5}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a3/} }
V. S. Klimov. On locally convex curves. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 5, pp. 567-577. http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a3/
[1] Luis A. Santaló, Introduction to integral geometry, Hermann, 1953, 127 pp. (in English) | MR
[2] Krasnosel'skii M. A., Perov A. I., Povolockii A. I., Zabreiko P. P., Plane Vector Fields, Academic Press, New York, 1966, 242 pp. | MR | MR
[3] Prasolov V. V., Elementy kombinatornoi i differencialnoi geometrii, MCNMO, Moscow, 2004 (in Russian)
[4] Ivanov A. O., Tuzhilin A. A., Fomenko A. T., “Computer modeling of curves and surfaces”, J. Math. Sci., 172:5 (2011), 663–689 | DOI | MR | Zbl
[5] Tricomi F. G., Differencial equations, Blackie Son Limited, 1961 (in English)
[6] Bessmertnyh G. A., Levin A. Yu., “O nekotoryh ocenkah differencyruemyh funccii odnoi peremennoi”, DAN SSSR, 144:3 (1962), 471–474 (in Russian) | MR | Zbl
[7] Zaputryaeva E. S., “Deformations of Planar Equilateral Polygons with a Constant Index”, Modeling and Analysis of Information Systems, 20:1 (2013), 138–159 (in Russian)
[8] Levin A. Yu., “Nonoscillation of solutions of the equation $x^{(n)} + p_1(t) x^{(n-1)} + \ldots + p_n(t) x = 0$”, Russian Math. Surveys, 24:2(146) (1969), 43–96 (in Russian) | MR
[9] Derr V. A., “Nonoscillation of solutions of linear differential equations”, Vestnik Udmurtskogo universiteta, 15:5 (2009), 46–89 (in Russian)
[10] Anisov S. S., “Convex curves in $\mathbb{R P}^n$”, Proc. Steklov Inst. Math., 221 (1998), 3–39 | MR | Zbl