On locally convex curves
Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 5, pp. 567-577.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the definition of locally convex curves and establish some properties of such curves. In the section 1, we consider the curve $K$ allowing the parametric representation $x = u(t),\, y = v(t), \, (a \leqslant t \leqslant b)$, where $u(t)$, $v(t)$ are continuously differentiable on $[a,b]$ functions such that $|u'(t)| + |v'(t)| > 0 \,\forall t \in [a,b]$. A continuous on $[a,b]$ function $\theta(t)$ is called the angle function of the curve $K$ if the following conditions hold: $u'(t) = \sqrt{(u'(t))^2 + (v'(t))^2}\, \cos \theta(t), \quad v'(t) = \sqrt{(u'(t))^2 + (v'(t))^2}\, \sin \theta(t)$. The curve $K$ is called locally convex if its angle function $\theta(t)$ is strictly monotonous on $[a,b]$. For a closed curve $K$ the number $deg K= \cfrac{\theta(b)- \theta(a)}{2 \pi}$ is whole. This number is equal to the number of rotations that the speed vector $(u'(t),v'(t))$ performs around the origin. The main result of the first section is the statement: if the curve $K$ is locally convex, then for any straight line $G$ the number $N(K;G)$ of intersections of $K$ and $G$ is finite and the estimate $N(K;G) \leqslant 2 |deg K|$ holds. We discuss versions of this estimate for closed and non-closed curves. In the sections 2 and 3, we consider curves arising in the investigation of a linear homogeneous differential equation of the form $L(x) \equiv x^{(n)} + p_1(t) x^{(n-1)} + \cdots p_n(t) x = 0 $ with locally summable coefficients $p_i(t)\, (i = 1, \cdots,n)$. We demonstrate how conditions of disconjugacy of the differential operator $L$ that were established in works of G. A. Bessmertnyh and A. Yu. Levin, can be applied.
Keywords: regular curve, corner function, degree, straight line, differential equation, polyline.
@article{MAIS_2017_24_5_a3,
     author = {V. S. Klimov},
     title = {On locally convex curves},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {567--577},
     publisher = {mathdoc},
     volume = {24},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a3/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - On locally convex curves
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2017
SP  - 567
EP  - 577
VL  - 24
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a3/
LA  - ru
ID  - MAIS_2017_24_5_a3
ER  - 
%0 Journal Article
%A V. S. Klimov
%T On locally convex curves
%J Modelirovanie i analiz informacionnyh sistem
%D 2017
%P 567-577
%V 24
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a3/
%G ru
%F MAIS_2017_24_5_a3
V. S. Klimov. On locally convex curves. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 5, pp. 567-577. http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a3/

[1] Luis A. Santaló, Introduction to integral geometry, Hermann, 1953, 127 pp. (in English) | MR

[2] Krasnosel'skii M. A., Perov A. I., Povolockii A. I., Zabreiko P. P., Plane Vector Fields, Academic Press, New York, 1966, 242 pp. | MR | MR

[3] Prasolov V. V., Elementy kombinatornoi i differencialnoi geometrii, MCNMO, Moscow, 2004 (in Russian)

[4] Ivanov A. O., Tuzhilin A. A., Fomenko A. T., “Computer modeling of curves and surfaces”, J. Math. Sci., 172:5 (2011), 663–689 | DOI | MR | Zbl

[5] Tricomi F. G., Differencial equations, Blackie Son Limited, 1961 (in English)

[6] Bessmertnyh G. A., Levin A. Yu., “O nekotoryh ocenkah differencyruemyh funccii odnoi peremennoi”, DAN SSSR, 144:3 (1962), 471–474 (in Russian) | MR | Zbl

[7] Zaputryaeva E. S., “Deformations of Planar Equilateral Polygons with a Constant Index”, Modeling and Analysis of Information Systems, 20:1 (2013), 138–159 (in Russian)

[8] Levin A. Yu., “Nonoscillation of solutions of the equation $x^{(n)} + p_1(t) x^{(n-1)} + \ldots + p_n(t) x = 0$”, Russian Math. Surveys, 24:2(146) (1969), 43–96 (in Russian) | MR

[9] Derr V. A., “Nonoscillation of solutions of linear differential equations”, Vestnik Udmurtskogo universiteta, 15:5 (2009), 46–89 (in Russian)

[10] Anisov S. S., “Convex curves in $\mathbb{R P}^n$”, Proc. Steklov Inst. Math., 221 (1998), 3–39 | MR | Zbl