The impulse-refractive mode in the neural network with ring synaptic interaction
Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 5, pp. 550-566.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, a mathematical model of a neural network with an even number of ring synaptic interaction elements is considered. The model is a system of scalar nonlinear differential-difference equations, the right parts of which depend on large parameters. The unknown functions included in the system characterize the membrane potentials of the neurons. The search of special impulse-refraction cycles within the system of equations is of interest. The functions with odd numbers of the impulse-refraction cycle have an asymptotically high pulses and the functions with even numbers are asymptotically small. Two changes allow to study a two-dimension nonlinear differential-difference system with two delays instead of the system. Further, a limit object that represents a relay system with two delays is defined by a large parameter tending to infinity. There exists the only periodic solution of the relay system with the initial function from a suitable function class. This is structurally proved, by using the step method. Next, the existence of relaxation periodic solutions of the two-dimension singularly perturbed system is proved by using the Poincare operator and the Schauder principle. The asymptotics of this solution is constructed, and it is proved that the solution is close to the decision of the relay system. Because of the exponential estimate of the Frechet derivative of the Poincare operator it implies the uniqueness and stability of solutions of the two-dimension differential-difference equation with two delays. Furthermore, with the help of reverse replacement the proved result is transferred to the original system.
Mots-clés : relaxation oscillations
Keywords: delay, large parameter, synaptic connection.
@article{MAIS_2017_24_5_a2,
     author = {M. M. Preobrazhenskaya},
     title = {The impulse-refractive mode in the neural network with ring synaptic interaction},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {550--566},
     publisher = {mathdoc},
     volume = {24},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a2/}
}
TY  - JOUR
AU  - M. M. Preobrazhenskaya
TI  - The impulse-refractive mode in the neural network with ring synaptic interaction
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2017
SP  - 550
EP  - 566
VL  - 24
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a2/
LA  - ru
ID  - MAIS_2017_24_5_a2
ER  - 
%0 Journal Article
%A M. M. Preobrazhenskaya
%T The impulse-refractive mode in the neural network with ring synaptic interaction
%J Modelirovanie i analiz informacionnyh sistem
%D 2017
%P 550-566
%V 24
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a2/
%G ru
%F MAIS_2017_24_5_a2
M. M. Preobrazhenskaya. The impulse-refractive mode in the neural network with ring synaptic interaction. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 5, pp. 550-566. http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a2/

[1] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “On a Method for Mathematical Modeling of Chemical Synapses”, Differential Equations, 49:10 (2013), 1193–1210 | DOI | MR | MR | Zbl

[2] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Self-excited relaxation oscillations in networks of impulse neurons”, Russian Math. Surveys, 70:3 (2015), 383–452 | DOI | DOI | MR | Zbl

[3] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Relaxation self-oscillations in Hopfield networks with delay”, Izvestiya: Mathematics, 77:2 (2013), 271–312 | DOI | DOI | MR | Zbl

[4] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Discrete autowaves in neural systems”, Computational Mathematics and Mathematical Physics, 52:5 (2012), 702–719 | DOI | MR | Zbl

[5] Preobrazhenskaia M. M., “Relaxation Cycles in a Model of Synaptically Interacting Oscillators”, MAIS, 24:2 (2017), 186–204 (in Russian) | MR

[6] Kolesov A. Yu., Mishchenko E. F., Rozov N. Kh., “Relay with delay and its $C^1$-approximation”, Proceedings of the Steklov Institute of Mathematics, 216 (1997), 119–146 | MR | Zbl

[7] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Relaxation self-oscillations in neuron systems: I”, Differential Equations, 47:7 (2011), 927–941 | DOI | MR | Zbl

[8] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Relaxation self-oscillations in neuron systems: II”, Differential Equations, 47:12 (2011), 1697–1713 | DOI | MR | Zbl

[9] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Relaxation self-oscillations in neuron systems: III”, Differential Equations, 48:2 (2012), 159–175 | DOI | MR | Zbl

[10] Kolesov A. Yu., Mishchenko E. F., Rozov N. Kh., “A modification of Hutchinson's equation”, Computational Mathematics and Mathematical Physics, 50:12 (2010), 1990–2002 | DOI | MR | Zbl

[11] Preobrazhenskaia M. M., “Existence and stability of relaxation cycles in a neurodynamic model with two delays”, Vestnik NIYaU MIFI, 5:4 (2016), 351–366 (in Russian) | DOI

[12] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Modeling the bursting effect in neuron systems”, Math. Notes, 93:5 (2013), 676–690 | DOI | DOI | MR | Zbl