Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2017_24_5_a2, author = {M. M. Preobrazhenskaya}, title = {The impulse-refractive mode in the neural network with ring synaptic interaction}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {550--566}, publisher = {mathdoc}, volume = {24}, number = {5}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a2/} }
TY - JOUR AU - M. M. Preobrazhenskaya TI - The impulse-refractive mode in the neural network with ring synaptic interaction JO - Modelirovanie i analiz informacionnyh sistem PY - 2017 SP - 550 EP - 566 VL - 24 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a2/ LA - ru ID - MAIS_2017_24_5_a2 ER -
M. M. Preobrazhenskaya. The impulse-refractive mode in the neural network with ring synaptic interaction. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 5, pp. 550-566. http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a2/
[1] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “On a Method for Mathematical Modeling of Chemical Synapses”, Differential Equations, 49:10 (2013), 1193–1210 | DOI | MR | MR | Zbl
[2] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Self-excited relaxation oscillations in networks of impulse neurons”, Russian Math. Surveys, 70:3 (2015), 383–452 | DOI | DOI | MR | Zbl
[3] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Relaxation self-oscillations in Hopfield networks with delay”, Izvestiya: Mathematics, 77:2 (2013), 271–312 | DOI | DOI | MR | Zbl
[4] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Discrete autowaves in neural systems”, Computational Mathematics and Mathematical Physics, 52:5 (2012), 702–719 | DOI | MR | Zbl
[5] Preobrazhenskaia M. M., “Relaxation Cycles in a Model of Synaptically Interacting Oscillators”, MAIS, 24:2 (2017), 186–204 (in Russian) | MR
[6] Kolesov A. Yu., Mishchenko E. F., Rozov N. Kh., “Relay with delay and its $C^1$-approximation”, Proceedings of the Steklov Institute of Mathematics, 216 (1997), 119–146 | MR | Zbl
[7] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Relaxation self-oscillations in neuron systems: I”, Differential Equations, 47:7 (2011), 927–941 | DOI | MR | Zbl
[8] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Relaxation self-oscillations in neuron systems: II”, Differential Equations, 47:12 (2011), 1697–1713 | DOI | MR | Zbl
[9] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Relaxation self-oscillations in neuron systems: III”, Differential Equations, 48:2 (2012), 159–175 | DOI | MR | Zbl
[10] Kolesov A. Yu., Mishchenko E. F., Rozov N. Kh., “A modification of Hutchinson's equation”, Computational Mathematics and Mathematical Physics, 50:12 (2010), 1990–2002 | DOI | MR | Zbl
[11] Preobrazhenskaia M. M., “Existence and stability of relaxation cycles in a neurodynamic model with two delays”, Vestnik NIYaU MIFI, 5:4 (2016), 351–366 (in Russian) | DOI
[12] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Modeling the bursting effect in neuron systems”, Math. Notes, 93:5 (2013), 676–690 | DOI | DOI | MR | Zbl