@article{MAIS_2017_24_5_a1,
author = {S. A. Kashchenko},
title = {Stability of the solutions of the simplest space-distributed discrete equations},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {537--549},
year = {2017},
volume = {24},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a1/}
}
TY - JOUR AU - S. A. Kashchenko TI - Stability of the solutions of the simplest space-distributed discrete equations JO - Modelirovanie i analiz informacionnyh sistem PY - 2017 SP - 537 EP - 549 VL - 24 IS - 5 UR - http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a1/ LA - ru ID - MAIS_2017_24_5_a1 ER -
S. A. Kashchenko. Stability of the solutions of the simplest space-distributed discrete equations. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 5, pp. 537-549. http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a1/
[1] Chang T., “Limit cycles in a two-dimensional first-order digital filter”, IEEE Trans. Ckts. and Syst., 24 (1977), 15–19 | DOI | MR | Zbl
[2] El-Agizi N. G., Fahmy M. M., “Sufficient conditions for the nonexistence of limit cycles in two-dimensional digital filters”, IEEE Trans. Ckts. and Syst., 26 (1979), 402–406 | DOI | MR | Zbl
[3] Maria G. A., Fahmy M. M., “Limit cycle oscillations in first-order two-dimensional digital filters”, IEEE Trans. Ckts. and Syst., 22 (1975), 246–251 | DOI | MR
[4] Bose T., Brown D. P., “First-order 2-D periodically shift varying digital filters without limit cycles”, Proc. IEEE Southeastcon (1988), 619–623
[5] El-Agizi N. G., Fahmy M. M., “Two-dimensional digital filters with no overflow oscillations”, IEEE Trans. Acous., Speech and Signal Process., 27 (1979), 465–469 | DOI | MR | Zbl
[6] Lodge J. H., Fahmy M. M., “Stability and overflow oscillations in 2-D state-space digital filters”, IEEE Trans. Acous., Speech and Signal Process, 29 (1981), 1161–1171 | DOI | MR
[7] Bose T., Brown D. P., “Limit cycles in 2-D linearshift varying digital filters”, Proc. 31st Midwest Symp. on Ckts. and Syst. (1988)
[8] Bose T., Brown D. P., “Limit cycles in first-order two-dimensional digital filters”, Proc. IEEE Southeastcon (1989), 371–375