Stability of the solutions of the simplest space-distributed discrete equations
Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 5, pp. 537-549.

Voir la notice de l'article provenant de la source Math-Net.Ru

The stability of the solutions of the linear equations arising in the theory of two-dimensional digital filtration is studied. The different statements of the initial value problem are analysed. As the basic results, the corresponding stability criterion is obtained for each of them.
Keywords: discrete equations, stability, boundary value problems, spectral set.
@article{MAIS_2017_24_5_a1,
     author = {S. A. Kashchenko},
     title = {Stability of the solutions of the simplest space-distributed discrete equations},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {537--549},
     publisher = {mathdoc},
     volume = {24},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a1/}
}
TY  - JOUR
AU  - S. A. Kashchenko
TI  - Stability of the solutions of the simplest space-distributed discrete equations
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2017
SP  - 537
EP  - 549
VL  - 24
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a1/
LA  - ru
ID  - MAIS_2017_24_5_a1
ER  - 
%0 Journal Article
%A S. A. Kashchenko
%T Stability of the solutions of the simplest space-distributed discrete equations
%J Modelirovanie i analiz informacionnyh sistem
%D 2017
%P 537-549
%V 24
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a1/
%G ru
%F MAIS_2017_24_5_a1
S. A. Kashchenko. Stability of the solutions of the simplest space-distributed discrete equations. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 5, pp. 537-549. http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a1/

[1] Chang T., “Limit cycles in a two-dimensional first-order digital filter”, IEEE Trans. Ckts. and Syst., 24 (1977), 15–19 | DOI | MR | Zbl

[2] El-Agizi N. G., Fahmy M. M., “Sufficient conditions for the nonexistence of limit cycles in two-dimensional digital filters”, IEEE Trans. Ckts. and Syst., 26 (1979), 402–406 | DOI | MR | Zbl

[3] Maria G. A., Fahmy M. M., “Limit cycle oscillations in first-order two-dimensional digital filters”, IEEE Trans. Ckts. and Syst., 22 (1975), 246–251 | DOI | MR

[4] Bose T., Brown D. P., “First-order 2-D periodically shift varying digital filters without limit cycles”, Proc. IEEE Southeastcon (1988), 619–623

[5] El-Agizi N. G., Fahmy M. M., “Two-dimensional digital filters with no overflow oscillations”, IEEE Trans. Acous., Speech and Signal Process., 27 (1979), 465–469 | DOI | MR | Zbl

[6] Lodge J. H., Fahmy M. M., “Stability and overflow oscillations in 2-D state-space digital filters”, IEEE Trans. Acous., Speech and Signal Process, 29 (1981), 1161–1171 | DOI | MR

[7] Bose T., Brown D. P., “Limit cycles in 2-D linearshift varying digital filters”, Proc. 31st Midwest Symp. on Ckts. and Syst. (1988)

[8] Bose T., Brown D. P., “Limit cycles in first-order two-dimensional digital filters”, Proc. IEEE Southeastcon (1989), 371–375