Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2017_24_5_a0, author = {E. A. Timofeev}, title = {Existence of an unbiased entropy estimator for the special {Bernoulli} measure}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {521--536}, publisher = {mathdoc}, volume = {24}, number = {5}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a0/} }
TY - JOUR AU - E. A. Timofeev TI - Existence of an unbiased entropy estimator for the special Bernoulli measure JO - Modelirovanie i analiz informacionnyh sistem PY - 2017 SP - 521 EP - 536 VL - 24 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a0/ LA - ru ID - MAIS_2017_24_5_a0 ER -
E. A. Timofeev. Existence of an unbiased entropy estimator for the special Bernoulli measure. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 5, pp. 521-536. http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a0/
[1] Falconer K. J., Fractal geometry: Mathematical Foundation and Applications, John Wiley Sons, NY, USA, 1990 | MR
[2] Gradshtein I. S., Ryzhik I. M., Table of integrals, Series, and Products, Fifth Edition, Academic Press, 1994 | MR
[3] Grassberger P., “Estimating the information content of symbol sequences and efficient codes”, IEEE Trans. Inform. Theory, 35 (1989), 669–675 | DOI | MR
[4] Hutchinson J. E., “Fractals and sel-similarity”, Indiana Univ. Math. J., 30 (1981), 713–747 | DOI | MR | Zbl
[5] Timofeev E. A., “Selection of a Metric for the Nearest Neighbor Entropy Estimators”, Journal of Mathematical Sciences, 203:6 (2014), 892–906 | DOI | MR | Zbl
[6] Kaltchenko A., Timofeeva N., “Entropy Estimators with Almost Sure Convergence and an $O(n^{-1})$ Variance”, Advances in Mathematics of Communications, 2:1 (2008), 1–13 | DOI | MR | Zbl
[7] Kaltchenko A., Timofeeva N., “Rate of convergence of the nearest neighbor entropy estimator”, AEU – International Journal of Electronics and Communications, 64:1 (2010), 75–79 | DOI
[8] Timofeeva N. E., “Construction of Entropy Estimator with Special Metric and Arbitrary Function”, Modeling and Analysis of Information Systems, 20:6 (2013), 174–178 (in Russian)
[9] Timofeev E. A., “Bias of a nonparametric entropy estimator for Markov measures”, Journal of Mathematical Sciences, 176:2 (2011), 255–269 | DOI | MR | Zbl
[10] Timofeev E. A., “Statistical Estimation of measure invariants”, St. Petersburg Math. J., 17:3 (2006), 527–551 | DOI | MR | Zbl