Existence of an unbiased entropy estimator for the special Bernoulli measure
Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 5, pp. 521-536.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Omega = {\mathcal A}^{{\mathbb N}}$ be a space of right-sided infinite sequences drawn from a finite alphabet ${\mathcal A} = \{0,1\}$, ${\mathbb N} = \{1,2,\dots \} $, $$ \rho(\boldsymbol{x},\boldsymbol{y}) = \sum_{k=1}^{\infty}|x_{k} - y_{k}|2^{-k} $$ a metric on $\Omega = {\mathcal A}^{{\mathbb N}}$, and $\mu$ is a probability measure on $\Omega$. Let $\boldsymbol{\xi_0}, \boldsymbol{\xi_1}, \dots, \boldsymbol{\xi_n}$ be independent identically distributed points on $\Omega$. We study the estimator $\eta_n^{(k)}(\gamma)$ of the reciprocal of the entropy $1/h$ that are defined as $$ \eta_n^{(k)}(\gamma) = k \left(r_{n}^{(k)}(\gamma) - r_{n}^{(k+1)}(\gamma)\right), $$ where $$ r_n^{(k)}(\gamma) = \frac{1}{n+1}\sum_{j=0}^{n} \gamma\left(\min_{i:i \neq j} {^{(k)}} \rho(\boldsymbol{\xi_{i}}, \boldsymbol{\xi_{j}})\right), $$ $\min ^{(k)}\{X_1,\dots,X_N\}= X_k$, if $X_1\leq X_2\leq \dots\leq X_N$. The number $k$ and the function $\gamma(t)$ are auxiliary parameters. The main result of this paper is Theorem. Let $\mu$ be the Bernoulli measure with probabilities $p_0,p_1>0$, $p_0+p_1=1$, $p_0=p_1^2$. There exists a function $\gamma(t)$ such that $$ \mathsf{E}\eta_n^{(k)}(\gamma) = \frac1h. $$
Keywords: measure, metric, entropy, estimator, unbias, self-similar, Bernoulli measure.
@article{MAIS_2017_24_5_a0,
     author = {E. A. Timofeev},
     title = {Existence of an unbiased entropy estimator for the special {Bernoulli} measure},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {521--536},
     publisher = {mathdoc},
     volume = {24},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a0/}
}
TY  - JOUR
AU  - E. A. Timofeev
TI  - Existence of an unbiased entropy estimator for the special Bernoulli measure
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2017
SP  - 521
EP  - 536
VL  - 24
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a0/
LA  - ru
ID  - MAIS_2017_24_5_a0
ER  - 
%0 Journal Article
%A E. A. Timofeev
%T Existence of an unbiased entropy estimator for the special Bernoulli measure
%J Modelirovanie i analiz informacionnyh sistem
%D 2017
%P 521-536
%V 24
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a0/
%G ru
%F MAIS_2017_24_5_a0
E. A. Timofeev. Existence of an unbiased entropy estimator for the special Bernoulli measure. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 5, pp. 521-536. http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a0/

[1] Falconer K. J., Fractal geometry: Mathematical Foundation and Applications, John Wiley Sons, NY, USA, 1990 | MR

[2] Gradshtein I. S., Ryzhik I. M., Table of integrals, Series, and Products, Fifth Edition, Academic Press, 1994 | MR

[3] Grassberger P., “Estimating the information content of symbol sequences and efficient codes”, IEEE Trans. Inform. Theory, 35 (1989), 669–675 | DOI | MR

[4] Hutchinson J. E., “Fractals and sel-similarity”, Indiana Univ. Math. J., 30 (1981), 713–747 | DOI | MR | Zbl

[5] Timofeev E. A., “Selection of a Metric for the Nearest Neighbor Entropy Estimators”, Journal of Mathematical Sciences, 203:6 (2014), 892–906 | DOI | MR | Zbl

[6] Kaltchenko A., Timofeeva N., “Entropy Estimators with Almost Sure Convergence and an $O(n^{-1})$ Variance”, Advances in Mathematics of Communications, 2:1 (2008), 1–13 | DOI | MR | Zbl

[7] Kaltchenko A., Timofeeva N., “Rate of convergence of the nearest neighbor entropy estimator”, AEU – International Journal of Electronics and Communications, 64:1 (2010), 75–79 | DOI

[8] Timofeeva N. E., “Construction of Entropy Estimator with Special Metric and Arbitrary Function”, Modeling and Analysis of Information Systems, 20:6 (2013), 174–178 (in Russian)

[9] Timofeev E. A., “Bias of a nonparametric entropy estimator for Markov measures”, Journal of Mathematical Sciences, 176:2 (2011), 255–269 | DOI | MR | Zbl

[10] Timofeev E. A., “Statistical Estimation of measure invariants”, St. Petersburg Math. J., 17:3 (2006), 527–551 | DOI | MR | Zbl