The expansion of self-similar functions in the Faber--Schauder system
Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 4, pp. 508-515.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Omega = {\mathcal A}^{{\mathbb N}}$ be a space of right-sided infinite sequences drawn from a finite alphabet ${\mathcal A} = \{0,1\}$, ${\mathbb N} = \{1,2,\dots \} $. Let $$ \rho(\mathbf{x},\mathbf{y}) = \sum_{k=1}^{\infty}|x_{k} - y_{k}|2^{-k} $$ be a metric on $\Omega = {\mathcal A}^{{\mathbb N}}$, and $\mu$ the Bernoulli measure on $\Omega$ with probabilities $p_0,p_1>0$, $p_0+p_1=1$. Denote by $B(\mathbf{x},\omega)$ an open ball of radius $r$ centered at $\mathbf{\omega}$. The main result of this paper is $$ \mu\left(B(\mathbf{\omega},r)\right) = r+\sum_{n=0}^{\infty}\sum_{j=0}^{2^n-1}\mu_{n,j}(\mathbf{\omega})\tau(2^nr-j), $$ where $\tau(x) =2\min\{x,1-x\}$, $0\leq x \leq 1$, ($\tau(x) = 0$, if $x0$ or $x>1$), $$ \mu_{n,j}(\mathbf{\omega}) = \left(1-p_{\omega_{n+1}}\right) \prod_{k=1}^n p_{\omega_k\oplus j_k},\ \ j = j_12^{n-1}+j_22^{n-2}+\dots+j_n. $$ The family of functions $1,x,\tau(2^nr-j)$, $j =0,1,\dots,2^n-1$, $n=0,1,\dots$, is the Faber–Schauder system for the space $C([0, 1])$ of continuous functions on $[0, 1]$. We also obtain the Faber–Schauder expansion for the Lebesgue's singular function, Cezaro curves, and Koch–Peano curves.
Keywords: Faber–Schauder system, Haar wavelet, self-similar
Mots-clés : Lebesgue's function.
@article{MAIS_2017_24_4_a8,
     author = {E. A. Timofeev},
     title = {The expansion of self-similar functions in the {Faber--Schauder} system},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {508--515},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_4_a8/}
}
TY  - JOUR
AU  - E. A. Timofeev
TI  - The expansion of self-similar functions in the Faber--Schauder system
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2017
SP  - 508
EP  - 515
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2017_24_4_a8/
LA  - ru
ID  - MAIS_2017_24_4_a8
ER  - 
%0 Journal Article
%A E. A. Timofeev
%T The expansion of self-similar functions in the Faber--Schauder system
%J Modelirovanie i analiz informacionnyh sistem
%D 2017
%P 508-515
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2017_24_4_a8/
%G ru
%F MAIS_2017_24_4_a8
E. A. Timofeev. The expansion of self-similar functions in the Faber--Schauder system. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 4, pp. 508-515. http://geodesic.mathdoc.fr/item/MAIS_2017_24_4_a8/

[1] Kashin B.S., Saakyan A. A., Orthogonal series, 2nd ed., Izd. Nauchno-Issled. Aktuarno-Finans. Tsentra (AFTs), M., 1999 | MR | MR | Zbl

[2] Lomnicki Z., Ulam S. E., “Sur la theorie de la mesure dans les espaces combinatoires et son application au calcul des probabilites. I. Variables independantes”, Fundamenta Mathematicae, 23:1 (1934), 237–278 | DOI

[3] De Rham G., “On Some Curves Defined by Functional Equations”, Classics on Fractals, ed. Gerald A. Edgar, Addison-Wesley, 1993, 285–298 | MR

[4] Levy P., “Plane or Space Curves and Surfaces Consisting of Parts Similar to the Whole”, Classics on Fractals, ed. Gerald A. Edgar, Addison-Wesley, 1993, 180–239