Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2017_24_3_a9, author = {S. D. Glyzin}, title = {Mathematical model of {Nicholson's} experiment}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {365--386}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a9/} }
S. D. Glyzin. Mathematical model of Nicholson's experiment. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 3, pp. 365-386. http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a9/
[1] Nicholson A. J., “An outline of the dinamics of animal populations”, Aust. J. Zool., 2:1 (1954), 9–65 | DOI
[2] Nicholson A. J., “The self-adjustment of populations to change”, Cold Spring Harbor Symp. Quant. Biol., 22 (1958), 153–173 | DOI
[3] May R.M., Conway G.R., Hassel M.P., Southwood T.R.E., “Time delay, density dependence and single oscillations”, J. Anim. Ecology, 43 (1974), 747–770 | DOI
[4] Oster G., Guckenheimer J., “Bifurcation fenomena in population models”, The Hopf Bifurcation, eds. J. Marsden, M. McCracken, Spring-Verlag, Berlin, 1976, 327–345 | DOI | MR
[5] Kolesov Yu. S., “Modelirovanie populyatsii nasekomykh”, Biofizika, 28:3 (1983), 513–514 (in Russian)
[6] Kolesov U.S., Kubyshkin Ye.P., “Nekotoryye svoystva resheniy differentsialno-raznostnykh uravneniy, modeliruyushchikh dinamiku izmeneniya chislennosti populyatsiy nasekomykh”, Issledovaniya po ustoychivosti i teorii kolebaniy, Yarosl. un-t, Yaroslavl, 1983, 64–86 (in Russian) | MR
[7] Kubyshkin Ye.P., “Lokalnyye metody v issledovanii sistemy differentsialno-raznostnykh uravneniy, modeliruyushchikh dinamiku izmeneniya chislennosti populyatsiy nasekomykh”, Nelineynyye kolebaniya v zadachakh ekologii, Yarosl. un-t, Yaroslavl, 1985, 70–82 (in Russian) | MR
[8] Glyzin S. D., “Dvukhchastotnyye kolebaniya fundamental'nogo uravneniya dinamiki populyatsiy nasekomykh”, Nelineynyye kolebaniya i ekologiya, Yaroslavskiy un-t, Yaroslavl, 1984, 91–116 (in Russian)
[9] Kaschenko S. A., “Stationary States of a Delay Differentional Equation of Insect Population's Dynamics”, Model. Anal. Inform. Sist., 19:5 (2012), 18–34 (in Russian)
[10] Glyzin S. D., “A registration of age groups for the Hutchinson's equation”, Model. Anal. Inform. Sist., 14:3 (2007), 29–42 (in Russian) | MR
[11] Guckenheimer J., Holmes P., Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Applied Mathematical Sciences, 42, Springer, 1983 | DOI | MR | Zbl
[12] Glyzin D. S., Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “The Dynamic Renormalization Method for Finding the Maximum Lyapunov Exponent of a Chaotic Attractor”, Differ. Equ., 41:2 (2005), 284–289 | DOI | MR | Zbl
[13] Crombie A.C., “On competition between different species of graminivoros insects”, Proc. R. Soc. (B), 133 (1946), 362–395 | DOI
[14] Crombie A.C., “Further experiments on insect competition”, Proc. R. Soc. (B), 133 (1946), 76–109 | DOI
[15] Birch L.C., “Experimental background to study of the distribution and abundance of insects. 1. The influence of temperature, moisture and food on the innate capacity for increase of three grane beatles”, Ecology, 34 (1953), 608–611