Mathematical model of Nicholson's experiment
Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 3, pp. 365-386.

Voir la notice de l'article provenant de la source Math-Net.Ru

Considered is a mathematical model of insects population dynamics, and an attempt is made to explain classical experimental results of Nicholson with its help. In the first section of the paper Nicholson's experiment is described and dynamic equations for its modeling are chosen. A priori estimates for model parameters can be made more precise by means of local analysis of the dynamical system, that is carried out in the second section. For parameter values found there the stability loss of the problem equilibrium of the leads to the bifurcation of a stable two-dimensional torus. Numerical simulations based on the estimates from the second section allows to explain the classical Nicholson's experiment, whose detailed theoretical substantiation is given in the last section. There for an atrractor of the system the largest Lyapunov exponent is computed. The nature of this exponent change allows to additionally narrow the area of model parameters search. Justification of this experiment was made possible only due to the combination of analytical and numerical methods in studying equations of insects population dynamics. At the same time, the analytical approach made it possible to perform numerical analysis in a rather narrow region of the parameter space. It is not possible to get into this area, based only on general considerations.
Keywords: differential-difference equations, asymptotic behaviour, stability, Lyapunov exponents, insect population dynamics.
@article{MAIS_2017_24_3_a9,
     author = {S. D. Glyzin},
     title = {Mathematical model of {Nicholson's} experiment},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {365--386},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a9/}
}
TY  - JOUR
AU  - S. D. Glyzin
TI  - Mathematical model of Nicholson's experiment
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2017
SP  - 365
EP  - 386
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a9/
LA  - ru
ID  - MAIS_2017_24_3_a9
ER  - 
%0 Journal Article
%A S. D. Glyzin
%T Mathematical model of Nicholson's experiment
%J Modelirovanie i analiz informacionnyh sistem
%D 2017
%P 365-386
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a9/
%G ru
%F MAIS_2017_24_3_a9
S. D. Glyzin. Mathematical model of Nicholson's experiment. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 3, pp. 365-386. http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a9/

[1] Nicholson A. J., “An outline of the dinamics of animal populations”, Aust. J. Zool., 2:1 (1954), 9–65 | DOI

[2] Nicholson A. J., “The self-adjustment of populations to change”, Cold Spring Harbor Symp. Quant. Biol., 22 (1958), 153–173 | DOI

[3] May R.M., Conway G.R., Hassel M.P., Southwood T.R.E., “Time delay, density dependence and single oscillations”, J. Anim. Ecology, 43 (1974), 747–770 | DOI

[4] Oster G., Guckenheimer J., “Bifurcation fenomena in population models”, The Hopf Bifurcation, eds. J. Marsden, M. McCracken, Spring-Verlag, Berlin, 1976, 327–345 | DOI | MR

[5] Kolesov Yu. S., “Modelirovanie populyatsii nasekomykh”, Biofizika, 28:3 (1983), 513–514 (in Russian)

[6] Kolesov U.S., Kubyshkin Ye.P., “Nekotoryye svoystva resheniy differentsialno-raznostnykh uravneniy, modeliruyushchikh dinamiku izmeneniya chislennosti populyatsiy nasekomykh”, Issledovaniya po ustoychivosti i teorii kolebaniy, Yarosl. un-t, Yaroslavl, 1983, 64–86 (in Russian) | MR

[7] Kubyshkin Ye.P., “Lokalnyye metody v issledovanii sistemy differentsialno-raznostnykh uravneniy, modeliruyushchikh dinamiku izmeneniya chislennosti populyatsiy nasekomykh”, Nelineynyye kolebaniya v zadachakh ekologii, Yarosl. un-t, Yaroslavl, 1985, 70–82 (in Russian) | MR

[8] Glyzin S. D., “Dvukhchastotnyye kolebaniya fundamental'nogo uravneniya dinamiki populyatsiy nasekomykh”, Nelineynyye kolebaniya i ekologiya, Yaroslavskiy un-t, Yaroslavl, 1984, 91–116 (in Russian)

[9] Kaschenko S. A., “Stationary States of a Delay Differentional Equation of Insect Population's Dynamics”, Model. Anal. Inform. Sist., 19:5 (2012), 18–34 (in Russian)

[10] Glyzin S. D., “A registration of age groups for the Hutchinson's equation”, Model. Anal. Inform. Sist., 14:3 (2007), 29–42 (in Russian) | MR

[11] Guckenheimer J., Holmes P., Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Applied Mathematical Sciences, 42, Springer, 1983 | DOI | MR | Zbl

[12] Glyzin D. S., Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “The Dynamic Renormalization Method for Finding the Maximum Lyapunov Exponent of a Chaotic Attractor”, Differ. Equ., 41:2 (2005), 284–289 | DOI | MR | Zbl

[13] Crombie A.C., “On competition between different species of graminivoros insects”, Proc. R. Soc. (B), 133 (1946), 362–395 | DOI

[14] Crombie A.C., “Further experiments on insect competition”, Proc. R. Soc. (B), 133 (1946), 76–109 | DOI

[15] Birch L.C., “Experimental background to study of the distribution and abundance of insects. 1. The influence of temperature, moisture and food on the innate capacity for increase of three grane beatles”, Ecology, 34 (1953), 608–611