Dynamically adapted mesh construction for the efficient numerical solution of a singular perturbed reaction-diffusion-advection equation
Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 3, pp. 322-338

Voir la notice de l'article provenant de la source Math-Net.Ru

This work develops a theory of the asymptotic-numerical investigation of the moving fronts in reaction-diffusion-advection models. By considering the numerical solution of the singularly perturbed Burgers's equation we discuss a method of dynamically adapted mesh construction that is able to significantly improve the numerical solution of this type of equations. For the construction we use a priori information that is based on the asymptotic analysis of the problem. In particular, we take into account the information about the speed of the transition layer, its width and structure. Our algorithms are able to reduce significantly complexity and enhance stability of the numerical calculations in comparison with classical approaches for solving this class of problems. The numerical experiment is presented to demonstrate the effectiveness of the proposed method. The article is published in the authors' wording.
Keywords: singularly perturbed, interior layer, dynamically adapted mesh.
@article{MAIS_2017_24_3_a5,
     author = {D. V. Luk'yanenko and V. T. Volkov and N. N. Nefedov},
     title = {Dynamically adapted mesh construction for the efficient numerical solution of a singular perturbed reaction-diffusion-advection equation},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {322--338},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a5/}
}
TY  - JOUR
AU  - D. V. Luk'yanenko
AU  - V. T. Volkov
AU  - N. N. Nefedov
TI  - Dynamically adapted mesh construction for the efficient numerical solution of a singular perturbed reaction-diffusion-advection equation
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2017
SP  - 322
EP  - 338
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a5/
LA  - en
ID  - MAIS_2017_24_3_a5
ER  - 
%0 Journal Article
%A D. V. Luk'yanenko
%A V. T. Volkov
%A N. N. Nefedov
%T Dynamically adapted mesh construction for the efficient numerical solution of a singular perturbed reaction-diffusion-advection equation
%J Modelirovanie i analiz informacionnyh sistem
%D 2017
%P 322-338
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a5/
%G en
%F MAIS_2017_24_3_a5
D. V. Luk'yanenko; V. T. Volkov; N. N. Nefedov. Dynamically adapted mesh construction for the efficient numerical solution of a singular perturbed reaction-diffusion-advection equation. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 3, pp. 322-338. http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a5/