Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2017_24_3_a5, author = {D. V. Luk'yanenko and V. T. Volkov and N. N. Nefedov}, title = {Dynamically adapted mesh construction for the efficient numerical solution of a singular perturbed reaction-diffusion-advection equation}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {322--338}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a5/} }
TY - JOUR AU - D. V. Luk'yanenko AU - V. T. Volkov AU - N. N. Nefedov TI - Dynamically adapted mesh construction for the efficient numerical solution of a singular perturbed reaction-diffusion-advection equation JO - Modelirovanie i analiz informacionnyh sistem PY - 2017 SP - 322 EP - 338 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a5/ LA - en ID - MAIS_2017_24_3_a5 ER -
%0 Journal Article %A D. V. Luk'yanenko %A V. T. Volkov %A N. N. Nefedov %T Dynamically adapted mesh construction for the efficient numerical solution of a singular perturbed reaction-diffusion-advection equation %J Modelirovanie i analiz informacionnyh sistem %D 2017 %P 322-338 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a5/ %G en %F MAIS_2017_24_3_a5
D. V. Luk'yanenko; V. T. Volkov; N. N. Nefedov. Dynamically adapted mesh construction for the efficient numerical solution of a singular perturbed reaction-diffusion-advection equation. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 3, pp. 322-338. http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a5/
[1] V. T. Volkov, N. N. Nefedov, “Asymptotic-numerical investigation of generation and motion of fronts in phase transition models”, Lecture Notes in Computer Science, 8236, 2013, 524–531 | DOI | MR | Zbl
[2] V. T. Volkov, N. E. Grachev, N. N. Nefedov, A. N. Nikolaev, “On the formation of sharp transition layers in two-dimensional reaction-diffusion models”, Comput. Math. and Math. Phys., 47:8 (2007), 1301–1309 | DOI | MR
[3] E. A. Antipov, N. T. Levashova, N. N. Nefedov, “Asymptotics of the front motion in the reaction-diffusion-advection problem”, Comput. Math. and Math. Phys., 54:10 (2014), 1536–1549 | DOI | MR | Zbl
[4] A. B. Al’shin, E. A. Al’shina, N. N. Kalitkin, A. B. Koryagina, “Rosenbrock schemes with complex coefficients for stiff, differential algebraic systems”, Comput. Math. and Math. Phys., 46:8 (2006), 1320–1340 | DOI | MR
[5] G.I. Shishkin, “Necessary conditions for $\varepsilon$-uniform convergence of finite difference schemes for parabolic equations with moving boundary layers”, Comput. Math. and Math. Phys., 47:10 (2007), 1636–1655 | DOI | MR
[6] G. I. Shishkin, L. P. Shishkina, P. W. Hemker, “A Class of Singularly Perturbed Convection-Diffusion Problems with a Moving Interior Layer. An a Posteriori Adaptive Mesh Technique”, Comput. Meth. Appl. Math., 4:1 (2004), 105–127 | DOI | MR | Zbl
[7] G.I. Shishkin, “Grid Approximation of a Singularly Perturbed Parabolic Equation on a Composed Domain with a Moving Interface Containing a Concentrated Source”, Comput. Math. and Math. Phys., 43 (2003), 1738–1755 | MR | Zbl
[8] G.I. Shishkin, “Grid approximation of a singularly perturbed quasilinear equation in the presence of a transition layer”, Russian Acad. Sci. Dokl. Math., 47:1 (1993), 83–88 | MR | Zbl
[9] J. Quinn, “A numerical method for a nonlinear singularly perturbed interior layer problem using an approximate layer location”, Journal of Computational, Applied Mathematics, 290 (2015), 500–515 | DOI | MR | Zbl
[10] E. O'Riordan, J. Quinn, “Numerical method for a nonlinear singularly perturbed interior layer problem”, Lecture Notes in Computational Science and Engineering, 81 (2011), 187–195 | DOI | MR
[11] E. O'Riordan, J. Quinn, “Parameter-uniform numerical method for some linear, nonlinear singularly perturbed convection-diffusion boundary turning point problems”, BIT Numerical Mathematics, 51:2 (2011), 317–337 | DOI | MR | Zbl
[12] N. Kopteva, M. Stynes, “Stabilised approximation of interior-layer solutons of a singularly perturbed semilinear reaction-diffusion problem”, Numerische Mathematik, 119:4 (2011), 787–810 | DOI | MR | Zbl
[13] N. Kopteva, “Numerical analysys of a 2d singularly perturbed semilinear reaction-diffusion problem”, Lecture Notes in Computer Science, 5434, 2009, 80–91 | DOI | Zbl
[14] S. Franz, N. Kopteva, “Green's function estimates for a singularly perturbed convection-diffusion problem”, J. Differential Equations, 252 (2012), 1521–1545 | DOI | MR | Zbl
[15] E. O'Riordan, G.I. Shishkin, “Singularly perturbed parabolic problems with non-smooth data”, J. of Computational, Applied Mathematics, 1 (2004), 233–245 | DOI | MR | Zbl
[16] P.A. Farrell, A.F. Hegarty, J.J.H. Miller, E. O'Riordan, G.I. Shishkin, Robust computational techniques for boundary layers, Chapman, Hall/CRC, 2000 | MR | Zbl
[17] P.A. Farrell, E. O'Riordan, G.I. Shishkin, “A class of singularly perturbed semilinear differential equations with interior layers”, Mathematics of Computation, 74:252 (2005), 1759–1776 | DOI | MR | Zbl
[18] N. Kopteva, E. O'Riordan, “Shishkin meshes in the numerical solution of singularly perturbed differential equations”, International Journal of Numerical Analysis, Modeling, 1:1 (2009), 1–18 | MR
[19] V. T. Volkov, N. N. Nefedov, E. A. Antipov, “Asymptotic-Numerical Method for Moving Fronts in Two-Dimensional R-D-A Problems”, Lecture Notes in Computer Science, 9045, 2015, 408–416 | DOI | MR | Zbl
[20] N. N. Kalitkin, A. B. Al’shin, E. A. Al’shina, B. V. Rogov, Computations on Quasi-Uniform Grids, Fizmatlit, M., 2005 (in Russian)