Relaxation cycles in a model of synaptically interacting oscillators
Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 2, pp. 186-204.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the mathematical model of a neural network with a ring synaptic interaction elements is considered. The model is a system of scalar nonlinear differential-difference equations, the right parts of which depend on a large parameter. The unknown functions included in the system characterize the membrane potentials of the neurons. The search of relaxation cycles within the system of equations is interested. To this end solutions of the task are finded in the form of discrete traveling waves. It allows to research a scalar nonlinear differential-difference equations with two delays instead of system. Further, a limit a object that represents a relay equation with two delays is defined by large parameter tends to infinity. There are six cases of restrictions on the parameters. In every case exist alone periodic solution of relay equation started from initial function from suitable function class. It is structurally proved by using the step method. Next, the existence of a relaxation periodic solutions of a singularly perturbed equation with two delays is proved by using Poincare operator and Schauder principle. The asymptotics of this solution is constructed, and then it is proved that the solution is close to decision of the relay equation. Because of the exponential estimate Frechet derivative of the Poincare operator implies the uniqueness and stability of solutions of differential-difference equation with two delays.
Mots-clés : relaxation oscillations
Keywords: delay, large parameter, synaptic connection.
@article{MAIS_2017_24_2_a4,
     author = {M. M. Preobrazhenskaia},
     title = {Relaxation cycles in a model of synaptically interacting oscillators},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {186--204},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_2_a4/}
}
TY  - JOUR
AU  - M. M. Preobrazhenskaia
TI  - Relaxation cycles in a model of synaptically interacting oscillators
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2017
SP  - 186
EP  - 204
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2017_24_2_a4/
LA  - ru
ID  - MAIS_2017_24_2_a4
ER  - 
%0 Journal Article
%A M. M. Preobrazhenskaia
%T Relaxation cycles in a model of synaptically interacting oscillators
%J Modelirovanie i analiz informacionnyh sistem
%D 2017
%P 186-204
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2017_24_2_a4/
%G ru
%F MAIS_2017_24_2_a4
M. M. Preobrazhenskaia. Relaxation cycles in a model of synaptically interacting oscillators. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 2, pp. 186-204. http://geodesic.mathdoc.fr/item/MAIS_2017_24_2_a4/

[1] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “On a Method for Mathematical Modeling of Chemical Synapses”, Differential Equations, 49:10 (2013), 1193–1210 | DOI | MR | MR | Zbl

[2] Somers D., Kopell N., “Rapid synchronization through fast threshold modulation”, Biol. Cybern., 68 (1993), 393–407 | DOI

[3] Somers D., Kopell N., “Anti-phase solutions in relaxation oscillators coupled through excitatory interactions”, J. Math. Biol., 33 (1995), 261–280 | MR | Zbl

[4] Izhikevich E. M., Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, MIT Press, 2010 | MR

[5] FitzHugh R. A., “Impulses and physiological states in theoretical models of nerve membrane”, Biophysical J., 1 (1961), 445–466 | DOI

[6] Terman D., “An Introduction to Dynamical Systems and Neuronal Dynamics”, Tutorials in Mathematical Biosciences I, Lecture Notes in Mathematics, 1860, 2005, 21–68 | DOI

[7] Hutchinson G. E., “Circular causal systems in ecology”, Ann. N. Y. Acad. of Sci., 50 (1948), 221–246 | DOI

[8] Kolesov A. Yu., Mishchenko E. F., Rozov N. Kh., “Relay with delay and its $C^1$-approximation”, Proceedings of the Steklov Institute of Mathematics, 216 (1997), 119–146 | MR | Zbl

[9] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Relaxation self-oscillations in neuron systems: I”, Differential Equations, 47:7 (2011), 927–941 | DOI | MR | Zbl

[10] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Relaxation self-oscillations in neuron systems: II”, Differential Equations, 47:12 (2011), 1697–1713 | DOI | MR | Zbl

[11] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Relaxation self-oscillations in neuron systems: III”, Differential Equations, 48:2 (2012), 159–175 | DOI | MR | Zbl

[12] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Discrete autowaves in neural systems”, Computational Mathematics and Mathematical Physics, 52:5 (2012), 702–719 | DOI | MR | Zbl

[13] Kolesov A. Yu., Mishchenko E. F., Rozov N. Kh., “A modification of Hutchinson's equation”, Computational Mathematics and Mathematical Physics, 50:12 (2010), 1990–2002 | DOI | MR | Zbl

[14] Preobrazhenskaia M. M., “Existence and stability of relaxation cycles in a neurodynamic model with two delays”, Vestnik NIYaU MIFI, 5:4 (2016), 351–366 | DOI

[15] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Self-excited relaxation oscillations in networks of impulse neurons”, Russian Math. Surveys, 70:3 (2015), 383–452 | DOI | DOI | MR | Zbl

[16] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Relaxation self-oscillations in Hopfield networks with delay”, Izvestiya: Mathematics, 77:2 (2013), 271–312 | DOI | DOI | MR | Zbl