Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2017_24_2_a4, author = {M. M. Preobrazhenskaia}, title = {Relaxation cycles in a model of synaptically interacting oscillators}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {186--204}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_2_a4/} }
TY - JOUR AU - M. M. Preobrazhenskaia TI - Relaxation cycles in a model of synaptically interacting oscillators JO - Modelirovanie i analiz informacionnyh sistem PY - 2017 SP - 186 EP - 204 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2017_24_2_a4/ LA - ru ID - MAIS_2017_24_2_a4 ER -
M. M. Preobrazhenskaia. Relaxation cycles in a model of synaptically interacting oscillators. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 2, pp. 186-204. http://geodesic.mathdoc.fr/item/MAIS_2017_24_2_a4/
[1] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “On a Method for Mathematical Modeling of Chemical Synapses”, Differential Equations, 49:10 (2013), 1193–1210 | DOI | MR | MR | Zbl
[2] Somers D., Kopell N., “Rapid synchronization through fast threshold modulation”, Biol. Cybern., 68 (1993), 393–407 | DOI
[3] Somers D., Kopell N., “Anti-phase solutions in relaxation oscillators coupled through excitatory interactions”, J. Math. Biol., 33 (1995), 261–280 | MR | Zbl
[4] Izhikevich E. M., Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, MIT Press, 2010 | MR
[5] FitzHugh R. A., “Impulses and physiological states in theoretical models of nerve membrane”, Biophysical J., 1 (1961), 445–466 | DOI
[6] Terman D., “An Introduction to Dynamical Systems and Neuronal Dynamics”, Tutorials in Mathematical Biosciences I, Lecture Notes in Mathematics, 1860, 2005, 21–68 | DOI
[7] Hutchinson G. E., “Circular causal systems in ecology”, Ann. N. Y. Acad. of Sci., 50 (1948), 221–246 | DOI
[8] Kolesov A. Yu., Mishchenko E. F., Rozov N. Kh., “Relay with delay and its $C^1$-approximation”, Proceedings of the Steklov Institute of Mathematics, 216 (1997), 119–146 | MR | Zbl
[9] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Relaxation self-oscillations in neuron systems: I”, Differential Equations, 47:7 (2011), 927–941 | DOI | MR | Zbl
[10] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Relaxation self-oscillations in neuron systems: II”, Differential Equations, 47:12 (2011), 1697–1713 | DOI | MR | Zbl
[11] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Relaxation self-oscillations in neuron systems: III”, Differential Equations, 48:2 (2012), 159–175 | DOI | MR | Zbl
[12] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Discrete autowaves in neural systems”, Computational Mathematics and Mathematical Physics, 52:5 (2012), 702–719 | DOI | MR | Zbl
[13] Kolesov A. Yu., Mishchenko E. F., Rozov N. Kh., “A modification of Hutchinson's equation”, Computational Mathematics and Mathematical Physics, 50:12 (2010), 1990–2002 | DOI | MR | Zbl
[14] Preobrazhenskaia M. M., “Existence and stability of relaxation cycles in a neurodynamic model with two delays”, Vestnik NIYaU MIFI, 5:4 (2016), 351–366 | DOI
[15] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Self-excited relaxation oscillations in networks of impulse neurons”, Russian Math. Surveys, 70:3 (2015), 383–452 | DOI | DOI | MR | Zbl
[16] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Relaxation self-oscillations in Hopfield networks with delay”, Izvestiya: Mathematics, 77:2 (2013), 271–312 | DOI | DOI | MR | Zbl