About bifurcations at small perturbations in a logistic equation with delay
Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 2, pp. 168-185.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers bifurcation problems for a logistic equation with delay at small perturbations. The most interesting results are for the case when small perturbations contain a large delay. The main results are special nonlinear equations of evolution in the normal form. Their nonlocal dynamics defines the behaviour of the solutions of the original equation in a small neigbourhood of the balance state or the cycle. It turns out that the order of large delay magnitude is principal. For the simplest case, when this order is congruent with the magnitude inverse to the small parameter appearing in the equation, the normal form is a complex equation with delay. In the case when the order of the delay coefficient is even higher, the normal form is presented by a multiparameter family of special boundary-value problems of degenerate-parabolic type. All these things allow to make a conclusion about the fact that in the considered problems with large delay the multistability is typical.
Keywords: nonlinear dynamics, asymptotic presentation.
Mots-clés : bifurcation
@article{MAIS_2017_24_2_a3,
     author = {S. A. Kashchenko},
     title = {About bifurcations at small perturbations in a logistic equation with delay},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {168--185},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_2_a3/}
}
TY  - JOUR
AU  - S. A. Kashchenko
TI  - About bifurcations at small perturbations in a logistic equation with delay
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2017
SP  - 168
EP  - 185
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2017_24_2_a3/
LA  - ru
ID  - MAIS_2017_24_2_a3
ER  - 
%0 Journal Article
%A S. A. Kashchenko
%T About bifurcations at small perturbations in a logistic equation with delay
%J Modelirovanie i analiz informacionnyh sistem
%D 2017
%P 168-185
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2017_24_2_a3/
%G ru
%F MAIS_2017_24_2_a3
S. A. Kashchenko. About bifurcations at small perturbations in a logistic equation with delay. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 2, pp. 168-185. http://geodesic.mathdoc.fr/item/MAIS_2017_24_2_a3/

[1] Wright E. M., “A non-linear difference-differential equation”, Journal für die reine und angewandte Mathematik, 194 (1955), 66–87 | MR | Zbl

[2] Kakutani S., Markus L., “On the non-linear difference-differential equation {$y'(t)=(a - by(t-\tau))y(t)$}”, Contributions to the Theory of Nonlinear Oscillations, v. 4, Annals of Mathematical Studies, 41, ed. S. Lefschetz, Princeton University Press, Princeton, 1958, 1–18 | MR

[3] Kashchenko S. A., “K voprosu ob otsenke v prostranstve parametrov oblasti globalnoy ustoychivosti uravneniya Khatchinsona”, Nelineynye kolebaniya v zadachakh ekologii, YarGU, Yaroslavl, 1985, 55–62 (in Russian)

[4] Jones G. S., “The existence of periodic solutions of {$f^{\prime}(x) = -\alpha f(x - 1) [1 + f(x)]$}”, Journal of Contemporary Mathematical Analysis, 5 (1962), 435–450 | DOI | MR | Zbl

[5] Kashchenko S. A., “Slozhnye statsionarnye rezhimy odnogo differentsialno-raznostnogo uravneniya, obobshchayushchego uravnenie Khatchinsona”, Issledovaniya po ustoychivosti i teorii kolebaniy, YarGU, Yaroslavl, 1983, 8 (in Russian)

[6] Kashchenko S. A., “O periodicheskikh resheniyakh uravneniya {$x'(t)=-lx(t-1)[1+x(t)]$}”, Issledovaniya po ustoychivosti i teorii kolebaniy, YarGU, Yaroslavl, 1978, 110–117 (in Russian) | MR

[7] Kashchenko S. A., “Asimptotika periodicheskogo resheniya obobshchennogo uravneniya Khatchinsona”, Issledovaniya po ustoychivosti i teorii kolebaniy, YarGU, Yaroslavl, 1981 (in Russian)

[8] Kashchenko S., “Asymptotics of the Solutions of the Generalized Hutchinson Equation”, Automatic Control and Computer Sciences, 47:7 (2013), 470–494 | DOI

[9] Hale J. K., Theory of functional differential equations, Springer Verlag, New York, 1977, 626 pp. | MR | Zbl

[10] Hartman P., Ordinary Differential Equations, Wiley, New York, 1965, 626 pp. | MR

[11] Kashchenko S. A., “Bifurcations in the neighborhood of a cycle under small perturbations with a large delay”, Comput. Math. Math. Phys., 40:5 (2000), 659–668 | MR | MR | Zbl

[12] Kashchenko S. A., “Bifurcational Features in Systems of Nonlinear Parabolic Equations with Weak Diffusion”, International Journal of Bifurcation and Chaos, 15:11 (2005), 3595–3606 | DOI | MR

[13] Kashchenko S. A., “Application of the normalization method to the study of the dynamics of a differential-difference equation with a small factor multiplying the derivative”, Differ. Uravn., 25:8 (1989), 1448–1451 | MR | Zbl

[14] Kashchenko I. S., “Asymptotic analysis of the behavior of solutions to equations with large delay”, Doklady Mathematics, 78:1 (2008), 570–573 (in Russian)

[15] Kashchenko I. S., “Local dynamics of equations with large delay”, Comput. Math. Math. Phys., 48:12 (2008), 2172–2181 | DOI | MR

[16] Kashchenko S. A., “The Ginzburg–Landau equation as a normal form for a second-order difference-differential equation with a large delay”, Comput. Math. Math. Phys., 38:3 (1998), 443–451 | MR | Zbl

[17] Akhromeeva T. S., Kurdyumov S. P., Malinetskiy G. G., Nestatsionarnye struktury i diffuzionnyy khaos, Nauka, M., 1992, 544 pp. (in Russian) | MR

[18] Aranson I. S., Kramer L., “The world of the complex Ginzburg–Landau equation”, Reviews of Modern Physics, 74:1 (2002), 99–143 | DOI | MR | Zbl

[19] Kudryashov N. A., Metody nelineynoy matematicheskoy fiziki, MIFI, M., 2008, 352 pp. (in Russian)

[20] Kashchenko A. A., “Analysis of running waves stability in the Ginzburg–Landau equation with small diffusion”, Model. Anal. Inform. Sist., 18:3 (2011), 58–62 (in Russian)

[21] Kashchenko A. A., “Analysis of Running Waves Stability in the Ginzburg–Landau Equation with Small Diffusion”, Automatic Control and Computer Sciences, 49:7 (2015), 514–517 | DOI