Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2017_24_2_a3, author = {S. A. Kashchenko}, title = {About bifurcations at small perturbations in a logistic equation with delay}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {168--185}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_2_a3/} }
TY - JOUR AU - S. A. Kashchenko TI - About bifurcations at small perturbations in a logistic equation with delay JO - Modelirovanie i analiz informacionnyh sistem PY - 2017 SP - 168 EP - 185 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2017_24_2_a3/ LA - ru ID - MAIS_2017_24_2_a3 ER -
S. A. Kashchenko. About bifurcations at small perturbations in a logistic equation with delay. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 2, pp. 168-185. http://geodesic.mathdoc.fr/item/MAIS_2017_24_2_a3/
[1] Wright E. M., “A non-linear difference-differential equation”, Journal für die reine und angewandte Mathematik, 194 (1955), 66–87 | MR | Zbl
[2] Kakutani S., Markus L., “On the non-linear difference-differential equation {$y'(t)=(a - by(t-\tau))y(t)$}”, Contributions to the Theory of Nonlinear Oscillations, v. 4, Annals of Mathematical Studies, 41, ed. S. Lefschetz, Princeton University Press, Princeton, 1958, 1–18 | MR
[3] Kashchenko S. A., “K voprosu ob otsenke v prostranstve parametrov oblasti globalnoy ustoychivosti uravneniya Khatchinsona”, Nelineynye kolebaniya v zadachakh ekologii, YarGU, Yaroslavl, 1985, 55–62 (in Russian)
[4] Jones G. S., “The existence of periodic solutions of {$f^{\prime}(x) = -\alpha f(x - 1) [1 + f(x)]$}”, Journal of Contemporary Mathematical Analysis, 5 (1962), 435–450 | DOI | MR | Zbl
[5] Kashchenko S. A., “Slozhnye statsionarnye rezhimy odnogo differentsialno-raznostnogo uravneniya, obobshchayushchego uravnenie Khatchinsona”, Issledovaniya po ustoychivosti i teorii kolebaniy, YarGU, Yaroslavl, 1983, 8 (in Russian)
[6] Kashchenko S. A., “O periodicheskikh resheniyakh uravneniya {$x'(t)=-lx(t-1)[1+x(t)]$}”, Issledovaniya po ustoychivosti i teorii kolebaniy, YarGU, Yaroslavl, 1978, 110–117 (in Russian) | MR
[7] Kashchenko S. A., “Asimptotika periodicheskogo resheniya obobshchennogo uravneniya Khatchinsona”, Issledovaniya po ustoychivosti i teorii kolebaniy, YarGU, Yaroslavl, 1981 (in Russian)
[8] Kashchenko S., “Asymptotics of the Solutions of the Generalized Hutchinson Equation”, Automatic Control and Computer Sciences, 47:7 (2013), 470–494 | DOI
[9] Hale J. K., Theory of functional differential equations, Springer Verlag, New York, 1977, 626 pp. | MR | Zbl
[10] Hartman P., Ordinary Differential Equations, Wiley, New York, 1965, 626 pp. | MR
[11] Kashchenko S. A., “Bifurcations in the neighborhood of a cycle under small perturbations with a large delay”, Comput. Math. Math. Phys., 40:5 (2000), 659–668 | MR | MR | Zbl
[12] Kashchenko S. A., “Bifurcational Features in Systems of Nonlinear Parabolic Equations with Weak Diffusion”, International Journal of Bifurcation and Chaos, 15:11 (2005), 3595–3606 | DOI | MR
[13] Kashchenko S. A., “Application of the normalization method to the study of the dynamics of a differential-difference equation with a small factor multiplying the derivative”, Differ. Uravn., 25:8 (1989), 1448–1451 | MR | Zbl
[14] Kashchenko I. S., “Asymptotic analysis of the behavior of solutions to equations with large delay”, Doklady Mathematics, 78:1 (2008), 570–573 (in Russian)
[15] Kashchenko I. S., “Local dynamics of equations with large delay”, Comput. Math. Math. Phys., 48:12 (2008), 2172–2181 | DOI | MR
[16] Kashchenko S. A., “The Ginzburg–Landau equation as a normal form for a second-order difference-differential equation with a large delay”, Comput. Math. Math. Phys., 38:3 (1998), 443–451 | MR | Zbl
[17] Akhromeeva T. S., Kurdyumov S. P., Malinetskiy G. G., Nestatsionarnye struktury i diffuzionnyy khaos, Nauka, M., 1992, 544 pp. (in Russian) | MR
[18] Aranson I. S., Kramer L., “The world of the complex Ginzburg–Landau equation”, Reviews of Modern Physics, 74:1 (2002), 99–143 | DOI | MR | Zbl
[19] Kudryashov N. A., Metody nelineynoy matematicheskoy fiziki, MIFI, M., 2008, 352 pp. (in Russian)
[20] Kashchenko A. A., “Analysis of running waves stability in the Ginzburg–Landau equation with small diffusion”, Model. Anal. Inform. Sist., 18:3 (2011), 58–62 (in Russian)
[21] Kashchenko A. A., “Analysis of Running Waves Stability in the Ginzburg–Landau Equation with Small Diffusion”, Automatic Control and Computer Sciences, 49:7 (2015), 514–517 | DOI