Completion of the kernel of the differentiation operator
Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 1, pp. 111-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

When investigating piecewise polynomial approximations in spaces $L_p, \; 0 p 1,$ the author considered the spreading of k-th derivative (of the operator) from Sobolev spaces $W_1 ^ k$ on spaces that are, in a sense, their successors with a low index less than one. In this article, we continue the study of the properties acquired by the differentiation operator $\Lambda$ with spreading beyond the space $W_1^1$ $\big/ \Lambda : W_1^1 \mapsto L_1,\; \Lambda f = f^{\;'} \big/$. The study is conducted by introducing the family of spaces $Y_p^1, \; 0 $ which have analogy with the family $W_p^1, \; 1 \le p \infty.$ This approach gives a new perspective for the properties of the derivative. It has been shown, for example, the additivity property relative to the interval of the spreading differentiation operator: $$ \bigcup_{n=1}^{m} \Lambda (f_n) = \Lambda (\bigcup_{n=1}^{m} f_n).$$ Here, for a function $f_n$ defined on $[x_{n-1}; x_n], \; a = x_0 x_1 \cdots $, $\Lambda (f_n)$ was defined. One of the most important characteristics of a linear operator is the composition of the kernel. During the spreading of the differentiation operator from the space $ C ^ 1 $ on the space $ W_p ^ 1 $ the kernel does not change. In the article, it is constructively shown that jump functions and singular functions $f$ belong to all spaces $ Y_p ^ 1 $ and $\Lambda f = 0.$ Consequently, the space of the functions of the bounded variation $H_1 ^ 1 $ is contained in each $ Y_p ^ 1 ,$ and the differentiation operator on $H_1^1$ satisfies the relation $\Lambda f = f^{\; '}.$ Also, we come to the conclusion that every function from the added part of the kernel can be logically named singular.
Keywords: differentiation operator
Mots-clés : kernel, quasinorma.
@article{MAIS_2017_24_1_a7,
     author = {A. N. Morozov},
     title = {Completion of the kernel of the differentiation operator},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {111--120},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_1_a7/}
}
TY  - JOUR
AU  - A. N. Morozov
TI  - Completion of the kernel of the differentiation operator
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2017
SP  - 111
EP  - 120
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2017_24_1_a7/
LA  - ru
ID  - MAIS_2017_24_1_a7
ER  - 
%0 Journal Article
%A A. N. Morozov
%T Completion of the kernel of the differentiation operator
%J Modelirovanie i analiz informacionnyh sistem
%D 2017
%P 111-120
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2017_24_1_a7/
%G ru
%F MAIS_2017_24_1_a7
A. N. Morozov. Completion of the kernel of the differentiation operator. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 1, pp. 111-120. http://geodesic.mathdoc.fr/item/MAIS_2017_24_1_a7/

[1] Morozov A. N., “Local Approximations of Differentiable Functions”, Math. Notes, 100:2 (2016), 256–262 | DOI | DOI | MR | Zbl

[2] Morozov A. N., “Kusochno-polinomialnye priblizheniay i differentsiruemost v prostranstvakh $L_p \; (0 p 1)$”, Modeling and analysis of inform. systems, 12:1 (2005), 18–21 (in Russian)

[3] Morozov A. N., “Countable Additivity of spread of the Differentiation Operator”, Modeling and analysis of inform. systems, 21:3 (2014), 81–90 (in Russian)

[4] Morozov A. N., “On Smoothness in $L_p \; (0 p 1)$”, Modeling and analysis of inform. systems, 19:3 (2012), 97–104 (in Russian)

[5] Kantorovich L. V., Akilov G. P., Functional analysis, ed. H. L. Silcock, Pergamon Press, Oxford–New York, 1982 | MR | Zbl

[6] Berg J., Lofsrom J., Interpolation Spaces. An Introduction, Springer-Verlag, 1976 ; Berg I., Lefstrem I., Interpolyatsionnye prostranstva. Vvedenie, eds. Kryuchkov V. S., Lizorkin P. I., Mir, M., 1980 | MR | Zbl

[7] Smolin U. N., Vvedenie v teoriyu funktsy deistvitelnoi peremennoi, FLINTA, M., 2012 (in Russian)

[8] Timan A. F., Theory of Approximation of Functions of a Real Variable, Courier Dover Publications, 1994 | MR