Stable cycles and tori of a system of three and four diffusive coupled oscillators
Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 6, pp. 850-859.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider chains of identical diffusive weakly coupled oscillation systems with different conditions on coupling on a chain bound. We suppose that every interacting oscillator undergoes Andronov–Hopf bifurcation, and the coefficient of coupling is proportional to the supercriticality value. For this case on a stable integral manifold of the system a normal form is constructed for which, in case of three oscillators interact, we can study the simplest stationary states and their phase transformations. As the coupling parameter changes, for the uniform stationary state corresponding to the uniform cycle of the problem there can be two cases, in the former case it loses stability with the emergence of two stable nonuniform states, and in the latter one it merges with two unstable nonuniform states and transfers to them its stability. For the stationary state corresponding to oscillations in antiphase two cases can be also distinguished. In the first one, this stationary state becomes stable due to the contraction of a stable limit cycle of the system into it (Andronov–Hopf bifurcation), and in the second case it becomes stable after branching from it an unstable limit cycle. If there are four oscillators in the chain, the system of phase difference for a small coupling coefficient was studied.
Keywords: normal form, self-oscillations, oscillators
Mots-clés : bifurcation, invariant torus.
@article{MAIS_2016_23_6_a13,
     author = {E. A. Marushkina},
     title = {Stable cycles and tori of a system of three and four diffusive coupled oscillators},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {850--859},
     publisher = {mathdoc},
     volume = {23},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_6_a13/}
}
TY  - JOUR
AU  - E. A. Marushkina
TI  - Stable cycles and tori of a system of three and four diffusive coupled oscillators
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2016
SP  - 850
EP  - 859
VL  - 23
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2016_23_6_a13/
LA  - ru
ID  - MAIS_2016_23_6_a13
ER  - 
%0 Journal Article
%A E. A. Marushkina
%T Stable cycles and tori of a system of three and four diffusive coupled oscillators
%J Modelirovanie i analiz informacionnyh sistem
%D 2016
%P 850-859
%V 23
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2016_23_6_a13/
%G ru
%F MAIS_2016_23_6_a13
E. A. Marushkina. Stable cycles and tori of a system of three and four diffusive coupled oscillators. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 6, pp. 850-859. http://geodesic.mathdoc.fr/item/MAIS_2016_23_6_a13/

[1] Glyzin S. D., “Dynamic properties of the simplest finite-difference approximations of the “reaction-diffusion” boundary value problem”, Differential Equations, 33:6 (1997), 808–814 | MR | Zbl

[2] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Chaotic buffering property in chains of coupled oscillators”, Differential Equations, 41:1 (2005), 41–49 | DOI | MR | Zbl

[3] Kolesov A. Yu., “Description of Phase Instability of a System of Harmonic Oscillators Weakly Coupled by Diffusion”, Dokl. Akad. Nauk SSSR, 300 (1988), 831–835 | MR

[4] Glyzin S. D., “Difference approximations of “reaction–diffusion” equation on a segment”, Modeling and Analysis of Information Systems, 16:3 (2009), 96–116 (in Russian)

[5] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Finite-dimensional models of diffusion chaos”, Comput. Math. Math. Phys., 50:5 (2010), 816–830 | DOI | MR | Zbl

[6] Glyzin S. D., Kolesov A. Yu., Lokalnye metody analiza dinamicheskikh sistem, Uchebnoe posobie, YrGU, Yaroslavl, 2006, 92 pp. (in Russian)

[7] Glyzin S. D., “Dimensional Characteristics of Diffusion Chaos”, Modeling and Analysis of Information Systems, 20:1 (2013), 30–51 (in Russian)

[8] Kolesov A. Yu., Rozov N. Kh., Invariant Tori of Nonlinear Wave Equations, Fizmatlit, M., 2004 (in Russian)

[9] Glyzin S. D., “Statsionarnyye rezhimy odnoy konechnoraznostnoy approksimatsii uravneniya Hatchinsona s diffuziyey”, Kachestvennyye i priblizhennyye metody issledovaniya operatornykh uravneniy, Mezhvuz. sb., YarGU, Yaroslavl, 1986, 112–127 (in Russian) | MR

[10] Aronson D. G., Ermentrout G. B., Kopell N., “Amplitude Response of Coupled Oscillators”, Physica D, 41 (1990), 403–449 | DOI | MR | Zbl

[11] Somers D., Kopell N., “Rapid synchronization through fast threshold modulation”, Biol. Cybern., 68 (1993), 393–407 | DOI

[12] Somers D., Kopell N., “Anti-phase solutions in relaxation oscillators coupled through excitatory interactions”, J. Math. Biol., 33 (1995), 261–280 | MR | Zbl

[13] Terman D., “An Introduction to Dynamical Systems and Neuronal Dynamics”, Tutorials in Mathematical Biosciences I, Lecture Notes in Mathematics, 1860, 2005, 21–68 | DOI