Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2016_23_6_a13, author = {E. A. Marushkina}, title = {Stable cycles and tori of a system of three and four diffusive coupled oscillators}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {850--859}, publisher = {mathdoc}, volume = {23}, number = {6}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_6_a13/} }
TY - JOUR AU - E. A. Marushkina TI - Stable cycles and tori of a system of three and four diffusive coupled oscillators JO - Modelirovanie i analiz informacionnyh sistem PY - 2016 SP - 850 EP - 859 VL - 23 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2016_23_6_a13/ LA - ru ID - MAIS_2016_23_6_a13 ER -
E. A. Marushkina. Stable cycles and tori of a system of three and four diffusive coupled oscillators. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 6, pp. 850-859. http://geodesic.mathdoc.fr/item/MAIS_2016_23_6_a13/
[1] Glyzin S. D., “Dynamic properties of the simplest finite-difference approximations of the “reaction-diffusion” boundary value problem”, Differential Equations, 33:6 (1997), 808–814 | MR | Zbl
[2] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Chaotic buffering property in chains of coupled oscillators”, Differential Equations, 41:1 (2005), 41–49 | DOI | MR | Zbl
[3] Kolesov A. Yu., “Description of Phase Instability of a System of Harmonic Oscillators Weakly Coupled by Diffusion”, Dokl. Akad. Nauk SSSR, 300 (1988), 831–835 | MR
[4] Glyzin S. D., “Difference approximations of “reaction–diffusion” equation on a segment”, Modeling and Analysis of Information Systems, 16:3 (2009), 96–116 (in Russian)
[5] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Finite-dimensional models of diffusion chaos”, Comput. Math. Math. Phys., 50:5 (2010), 816–830 | DOI | MR | Zbl
[6] Glyzin S. D., Kolesov A. Yu., Lokalnye metody analiza dinamicheskikh sistem, Uchebnoe posobie, YrGU, Yaroslavl, 2006, 92 pp. (in Russian)
[7] Glyzin S. D., “Dimensional Characteristics of Diffusion Chaos”, Modeling and Analysis of Information Systems, 20:1 (2013), 30–51 (in Russian)
[8] Kolesov A. Yu., Rozov N. Kh., Invariant Tori of Nonlinear Wave Equations, Fizmatlit, M., 2004 (in Russian)
[9] Glyzin S. D., “Statsionarnyye rezhimy odnoy konechnoraznostnoy approksimatsii uravneniya Hatchinsona s diffuziyey”, Kachestvennyye i priblizhennyye metody issledovaniya operatornykh uravneniy, Mezhvuz. sb., YarGU, Yaroslavl, 1986, 112–127 (in Russian) | MR
[10] Aronson D. G., Ermentrout G. B., Kopell N., “Amplitude Response of Coupled Oscillators”, Physica D, 41 (1990), 403–449 | DOI | MR | Zbl
[11] Somers D., Kopell N., “Rapid synchronization through fast threshold modulation”, Biol. Cybern., 68 (1993), 393–407 | DOI
[12] Somers D., Kopell N., “Anti-phase solutions in relaxation oscillators coupled through excitatory interactions”, J. Math. Biol., 33 (1995), 261–280 | MR | Zbl
[13] Terman D., “An Introduction to Dynamical Systems and Neuronal Dynamics”, Tutorials in Mathematical Biosciences I, Lecture Notes in Mathematics, 1860, 2005, 21–68 | DOI