Dynamics of a system of two simplest oscillators with finite non-linear feedbacks
Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 6, pp. 841-849.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a singularly perturbed system of two differential equations with delay which simulates two coupled oscillators with nonlinear feedback. Feedback function is assumed to be finite, piecewise continuous, and with a constant sign. In this paper, we prove the existence of relaxation periodic solutions and make conclusion about their stability. With the help of the special method of a large parameter we construct asymptotics of the solutions with the initial conditions of a certain class. On this asymptotics we build a special mapping, which in the main describes the dynamics of the original model. It is shown that the dynamics changes significantly with the decreasing of coupling coefficient: we have a stable homogeneous periodic solution if the coupling coefficient is of unity order, and with decreasing the coupling coefficient the dynamics become more complex, and it is described by a special mapping. It was shown that for small values of the coupling under certain values of the parameters several different stable relaxation periodic regimes coexist in the original problem.
Keywords: asymptotics, stability, large parameter, periodic solution.
Mots-clés : relaxation oscillation
@article{MAIS_2016_23_6_a12,
     author = {A. A. Kashchenko},
     title = {Dynamics of a system of two simplest oscillators with finite non-linear feedbacks},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {841--849},
     publisher = {mathdoc},
     volume = {23},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_6_a12/}
}
TY  - JOUR
AU  - A. A. Kashchenko
TI  - Dynamics of a system of two simplest oscillators with finite non-linear feedbacks
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2016
SP  - 841
EP  - 849
VL  - 23
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2016_23_6_a12/
LA  - ru
ID  - MAIS_2016_23_6_a12
ER  - 
%0 Journal Article
%A A. A. Kashchenko
%T Dynamics of a system of two simplest oscillators with finite non-linear feedbacks
%J Modelirovanie i analiz informacionnyh sistem
%D 2016
%P 841-849
%V 23
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2016_23_6_a12/
%G ru
%F MAIS_2016_23_6_a12
A. A. Kashchenko. Dynamics of a system of two simplest oscillators with finite non-linear feedbacks. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 6, pp. 841-849. http://geodesic.mathdoc.fr/item/MAIS_2016_23_6_a12/

[1] Dmitriev A. S., Kislov V. Ya., Stokhasticheskie kolebaniya v radiotekhnike, Nauka, M., 1989 (in Russian)

[2] Rozhdestvenskiy V. V., Struchkov I. N., “Perekhodnyy khaos v avtogeneratore stokhasticheskikh kolebaniy s zhestkim vozbuzhdeniem i chetnoy nelineynostyu”, Journal of technical physics, 62:10 (1992), 102–110 (in Russian)

[3] Struchkov I. N., “Perekhodnyy khaos v aperiodicheskom ostsillyatore s zapazdyvaniem”, Radiotekhnika i elektronika, 38:3 (1993), 454–463 (in Russian)

[4] Dmitriev A. S., Kaschenko S. A., “Dinamika generatora s zapazdyvayushchey obratnoy svyazyu i nizkodobrotnym filtrom vtorogo poryadka”, Radiotekhnika i elektronika, 34:12 (1989), 24–39 (in Russian)

[5] Dmitriev A. S., Kaschenko S. A., “Asymptotics of irregular oscillations in a self-sustained oscillator model with delayed feedback”, Doklady Mathematics, 328 (1993), 157–160 | MR | Zbl

[6] Kaschenko S. A., “Asimptotika relaksatsionnykh kolebaniy v sistemakh differentsialno-raznostnykh uravneniy s finitnoy nelineynostyu. I”, Differentsialnye uravneniya, 31:8 (1995), 1330–1339 (in Russian) | MR

[7] Kaschenko S. A., “Asimptotika relaksatsionnykh kolebaniy v sistemakh differentsialno-raznostnykh uravneniy s finitnoy nelineynostyu. II”, Differentsialnye uravneniya, 31:12 (1995), 1968–1976 (in Russian) | MR

[8] Sharkovsky A. N., Maistrenko Yu. L., Romanenko E. Yu., Difference equations and their applications, Springer Science Business Media, 2012 | MR | MR

[9] Kaschenko S. A., “Relaxation Oscillations in a System with Delays Modeling the Predator-Prey Problem”, Modeling and Analysis of Information Systems, 20:1 (2013), 52–98 (in Russian)