On numerical characteristics of а simplex and their estimates
Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 5, pp. 603-619.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $n\in {\mathbb N}$, and let $Q_n=[0,1]^n$ be the $n$-dimensional unit cube. For a nondegenerate simplex $S\subset {\mathbb R}^n$, by $\sigma S$ we denote the homothetic image of $S$ with the center of homothety in the center of gravity of S and the ratio of homothety $\sigma$. We apply the following numerical characteristics of the simplex. Denote by $\xi(S)$ the minimal $\sigma>0$ with the property $Q_n\subset \sigma S$. By $\alpha(S)$ we denote the minimal $\sigma>0$ such that $Q_n$ is contained in a translate of a simplex $\sigma S$. By $d_i(S)$ we mean the $i$th axial diameter of $S$, i. e. the maximum length of a segment contained in $S$ and parallel to the $i$th coordinate axis. We apply the computational formulae for $\xi(S)$, $\alpha(S)$, $d_i(S)$ which have been proved by the first author. In the paper we discuss the case $S\subset Q_n$. Let $\xi_n=\min\{ \xi(S): S\subset Q_n\}. $ Earlier the first author formulated the conjecture: if $\xi(S)=\xi_n$, then $\alpha(S)=\xi(S)$. He proved this statement for $n=2$ and the case when $n+1$ is an Hadamard number, i. e. there exists an Hadamard matrix of order $n+1$. The following conjecture is a stronger proposition: for each $n$, there exist $\gamma\geq 1$, not depending on $S\subset Q_n$, such that $\xi(S)-\alpha(S)\leq \gamma (\xi(S)-\xi_n).$ By $\varkappa_n$ we denote the minimal $\gamma$ with such a property. If $n+1$ is an Hadamard number, then the precise value of $\varkappa_n$ is 1. The existence of $\varkappa_n$ for other $n$ was unclear. In this paper with the use of computer methods we obtain an equality $$\varkappa_2 = \frac{5+2\sqrt{5}}{3}=3.1573\ldots $$ Also we prove a new estimate $$\xi_4\leq \frac{19+5\sqrt{13}}{9}=4.1141\ldots,$$ which improves the earlier result $\xi_4\leq \frac{13}{3}=4.33\ldots$ Our conjecture is that $\xi_4$ is precisely $\frac{19+5\sqrt{13}}{9}$. Applying this value in numerical computations we achive the value $$\varkappa_4 = \frac{4+\sqrt{13}}{5}=1.5211\ldots$$ Denote by $\theta_n$ the minimal norm of interpolation projection on the space of linear functions of $n$ variables as an operator from $C(Q_n)$ in $C(Q_n)$. It is known that, for each $n$, $$\xi_n\leq \frac{n+1}{2}\left(\theta_n-1\right)+1,$$ and for $n=1,2,3,7$ here we have an equality. Using computer methods we obtain the result $\theta_4=\frac{7}{3}$. Hence, the minimal $n$ such that the above inequality has a strong form is equal to 4.
Mots-clés : simplex, norm
Keywords: cube, coefficient of homothety, axial diameter, linear interpolation, projection, numerical methods.
@article{MAIS_2016_23_5_a9,
     author = {M. V. Nevskii and A. Yu. Ukhalov},
     title = {On numerical characteristics of {\cyra} simplex and their estimates},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {603--619},
     publisher = {mathdoc},
     volume = {23},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a9/}
}
TY  - JOUR
AU  - M. V. Nevskii
AU  - A. Yu. Ukhalov
TI  - On numerical characteristics of а simplex and their estimates
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2016
SP  - 603
EP  - 619
VL  - 23
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a9/
LA  - ru
ID  - MAIS_2016_23_5_a9
ER  - 
%0 Journal Article
%A M. V. Nevskii
%A A. Yu. Ukhalov
%T On numerical characteristics of а simplex and their estimates
%J Modelirovanie i analiz informacionnyh sistem
%D 2016
%P 603-619
%V 23
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a9/
%G ru
%F MAIS_2016_23_5_a9
M. V. Nevskii; A. Yu. Ukhalov. On numerical characteristics of а simplex and their estimates. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 5, pp. 603-619. http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a9/

[1] Klimov V. S., Ukhalov A. Yu., Reshenie zadach matematicheskogo analiza s ispolzovaniem sistem kompyuternoi matematiki, P. G. Demidov Yaroslavl State University, Yaroslavl, 2014, 96 pp. (in Russian)

[2] Nevskij M. V., “Inequalities for the norms of interpolating projections”, Modeling and Analysis of Information Systems, 15:3 (2008), 28–37 (in Russian)

[3] Nevskij M. V., “On a certain relation for the minimal norm of an interpolational projection”, Modeling and Analysis of Information Systems, 16:1 (2009), 24–43 (in Russian)

[4] Nevskii M. V., “On a property of $n$-dimensional simplices”, Math. Notes, 87:4 (2010), 543–555 | DOI | DOI | MR | Zbl

[5] Nevskii M. V., “On geometric charasteristics of an $n$-dimensional simplex”, Modeling and Analysis of Information Systems, 18:2 (2011), 52–64 (in Russian)

[6] Nevskii M., “Properties of axial diameters of a simplex”, Discrete Comput. Geom., 46:2 (2011), 301–312 | DOI | MR | Zbl

[7] Nevskii M. V., Geometricheskie ocenki v polinomialnoy interpolyacii, P. G. Demidov Yaroslavl State University, Yaroslavl, 2012, 218 pp. (in Russian)

[8] Nevskii M. V., “Computation of the longest segment of a given direction in a simplex”, Journal of Math. Sciences, 203:6 (2014), 851–854 | DOI | MR | Zbl

[9] Hudelson M., Klee V., Larman D., “Largest $j$-simplices in $d$-cubes: some relatives of the Hadamard maximum determinant problem”, Linear Algebra Appl., 241–243 (1996), 519–598 | DOI | MR | Zbl

[10] Lassak M., “Parallelotopes of maximum volume in a simplex”, Discrete Comput. Geom., 21 (1999), 449–462 | DOI | MR | Zbl

[11] Scott P. R., “Lattices and convex sets in space”, Quart. J. Math. Oxford (2), 36 (1985), 359–362 | DOI | MR | Zbl

[12] Scott P. R., “Properties of axial diameters”, Bull. Austral. Math. Soc., 39 (1989), 329–333 | DOI | MR | Zbl