Polylogarithms and the asymptotic formula for the moments of Lebesgue’s singular function
Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 5, pp. 595-602.

Voir la notice de l'article provenant de la source Math-Net.Ru

Recall the Lebesgue's singular function. We define a Lebesgue's singular function $L(t)$ as the unique continuous solution of the functional equation $$ L(t) = qL(2t) +pL(2t-1), $$ where $p,q>0$, $q=1-p$, $p\ne q$. The moments of Lebesque' singular function are defined as $$ M_n = \int_0^1t^n dL(t), \quad n = 0, 1, \dots $$ The main result of this paper is $$ M_n = n^{\log_2 p} e^{-\tau(n)}\left(1 + \mathcal{O}(n^{-0.99})\right), $$ where \begin{gather*} \tau(x) = \frac12\ln p + \Gamma'(1)\log_2 p +\frac1{\ln 2}\frac{\partial}{\partial z}\left.\mathrm{Li}_{z}\left(-\frac{q}{p}\right)\right|_{z=1} +\frac1{\ln 2}\sum_{k\ne0} \Gamma(z_k)\mathrm{Li}_{z_k+1}\left(-\frac{q}{p}\right) x^{-z_k},\\ z_k = \frac{2\pi ik}{\ln 2}, \ k\ne 0. \end{gather*} The proof is based on analytic techniques such as the poissonization and the Mellin transform.
Mots-clés : moments, Lebesgue’s function, polylogarithm
Keywords: self-similar, singular, Mellin transform, asymptotic.
@article{MAIS_2016_23_5_a8,
     author = {E. A. Timofeev},
     title = {Polylogarithms and the asymptotic formula for the moments of {Lebesgue{\textquoteright}s} singular function},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {595--602},
     publisher = {mathdoc},
     volume = {23},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a8/}
}
TY  - JOUR
AU  - E. A. Timofeev
TI  - Polylogarithms and the asymptotic formula for the moments of Lebesgue’s singular function
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2016
SP  - 595
EP  - 602
VL  - 23
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a8/
LA  - ru
ID  - MAIS_2016_23_5_a8
ER  - 
%0 Journal Article
%A E. A. Timofeev
%T Polylogarithms and the asymptotic formula for the moments of Lebesgue’s singular function
%J Modelirovanie i analiz informacionnyh sistem
%D 2016
%P 595-602
%V 23
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a8/
%G ru
%F MAIS_2016_23_5_a8
E. A. Timofeev. Polylogarithms and the asymptotic formula for the moments of Lebesgue’s singular function. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 5, pp. 595-602. http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a8/

[1] Flajolet P., Sedgewick R., Analytic Combinatorics, Cambridge University Press, 2008 | MR

[2] Lomnicki Z., Ulam S. E., “Sur la theorie de la mesure dans les espaces combinatoires et son application au calcul des probabilites. I. Variables independantes”, Fundamenta Mathematicae, 23:1 (1934), 237–278

[3] NIST Handbook of Mathematical Functions, ed. Olver F.W.J., Cambridge University Press, 2010 | MR | Zbl

[4] Salem R., “On some singular monotonic functions which are strictly increasing,”, Trans. Amer. Math. Soc., 53:3 (1943), 427–439 | DOI | MR | Zbl

[5] De Rham G., “On Some Curves Defined by Functional Equations”, Classics on Fractals, ed. Gerald A. Edgar, Addison-Wesley, 1993, 285–298

[6] Flajolet P., Gourdon X., Dumas P., “Mellin transforms and asymptotics: Harmonic sums”, Theoretical Computer Science, 144:1–2 (1995), 3–58 | DOI | MR | Zbl

[7] Szpankowski W., Average Case Analysis of Algorithms on Sequences, John Wiley Sons, New York, 2001 | MR

[8] Gradstein I. S., Ryzhik I. M., Table of integrals, Series, and Products, Academic Press, 1994

[9] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integrals and Series, v. 3, More Special Functions, Gordon Breach Sci., New York, 1990 | MR | Zbl

[10] Timofeev E. A., “Bias of a nonparametric entropy estimator for Markov measures”, Journal of Mathematical Sciences, 176:2 (2011), 255–269 | DOI | MR | Zbl

[11] Timofeev E. A., “Asymptotic Formula for the Moments of Lebesgue's Singular Function”, Modeling and Analysis of Information Systems, 22:5 (2015), 723–730 (in Russian) | MR