Polylogarithms and the asymptotic formula for the moments of Lebesgue’s singular function
Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 5, pp. 595-602
Voir la notice de l'article provenant de la source Math-Net.Ru
Recall the Lebesgue's singular function. We define a Lebesgue's singular function $L(t)$ as the unique continuous solution of the functional equation
$$
L(t) = qL(2t) +pL(2t-1),
$$
where $p,q>0$, $q=1-p$, $p\ne q$.
The moments of Lebesque' singular function are defined as
$$
M_n = \int_0^1t^n dL(t), \quad n = 0, 1, \dots
$$
The main result of this paper is
$$
M_n =
n^{\log_2 p} e^{-\tau(n)}\left(1 + \mathcal{O}(n^{-0.99})\right),
$$
where
\begin{gather*}
\tau(x) =
\frac12\ln p + \Gamma'(1)\log_2 p +\frac1{\ln 2}\frac{\partial}{\partial z}\left.\mathrm{Li}_{z}\left(-\frac{q}{p}\right)\right|_{z=1}
+\frac1{\ln 2}\sum_{k\ne0}
\Gamma(z_k)\mathrm{Li}_{z_k+1}\left(-\frac{q}{p}\right) x^{-z_k},\\
z_k = \frac{2\pi ik}{\ln 2}, \ k\ne 0.
\end{gather*}
The proof is based on analytic techniques such as the poissonization and the Mellin transform.
Mots-clés :
moments, Lebesgue’s function, polylogarithm
Keywords: self-similar, singular, Mellin transform, asymptotic.
Keywords: self-similar, singular, Mellin transform, asymptotic.
@article{MAIS_2016_23_5_a8,
author = {E. A. Timofeev},
title = {Polylogarithms and the asymptotic formula for the moments of {Lebesgue{\textquoteright}s} singular function},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {595--602},
publisher = {mathdoc},
volume = {23},
number = {5},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a8/}
}
TY - JOUR AU - E. A. Timofeev TI - Polylogarithms and the asymptotic formula for the moments of Lebesgue’s singular function JO - Modelirovanie i analiz informacionnyh sistem PY - 2016 SP - 595 EP - 602 VL - 23 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a8/ LA - ru ID - MAIS_2016_23_5_a8 ER -
E. A. Timofeev. Polylogarithms and the asymptotic formula for the moments of Lebesgue’s singular function. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 5, pp. 595-602. http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a8/