Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2016_23_5_a4, author = {A. A. Mel'nikova and R. L. Argun}, title = {Asymptotic approximation of the stationary solution with internal layer for {FitzHugh--Nagumo} system}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {559--567}, publisher = {mathdoc}, volume = {23}, number = {5}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a4/} }
TY - JOUR AU - A. A. Mel'nikova AU - R. L. Argun TI - Asymptotic approximation of the stationary solution with internal layer for FitzHugh--Nagumo system JO - Modelirovanie i analiz informacionnyh sistem PY - 2016 SP - 559 EP - 567 VL - 23 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a4/ LA - ru ID - MAIS_2016_23_5_a4 ER -
%0 Journal Article %A A. A. Mel'nikova %A R. L. Argun %T Asymptotic approximation of the stationary solution with internal layer for FitzHugh--Nagumo system %J Modelirovanie i analiz informacionnyh sistem %D 2016 %P 559-567 %V 23 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a4/ %G ru %F MAIS_2016_23_5_a4
A. A. Mel'nikova; R. L. Argun. Asymptotic approximation of the stationary solution with internal layer for FitzHugh--Nagumo system. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 5, pp. 559-567. http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a4/
[1] Butuzov V. F., Levashova N. T., Mel'nikova A. A., “Steplike contrast structure in a singularly perturbed system of equations with different powers of small parameter”, Comput. Math. Math. Phys., 52:11 (2012), 1526–1546 | DOI | MR | Zbl
[2] Sidorova A. E., Levashova N. T., Mel'nikova A. A., Yakovenko L. V., “A model of a human dominated urban ecosystem as an active medium”, Biophysics, 60:3 (2015), 466–473 | DOI | MR
[3] FitzHugh R., “Impulses and physiological states in theoretical model of nerve membrane”, Biophys. J., 1:1 (1961), 445–466 | DOI
[4] Murray J., Mathematical Biology II: Spatial Models and Biomedical Applications, Springer-Verlag, New York, 2003 | MR
[5] Comput. Math. Math. Phys., 53:3 (2013), 273–283 | DOI | DOI | MR | Zbl
[6] Nefedov N. N., Recke L., Schneider K. R., “Existence and asymptotic stability of periodic solutions with an interior layer of reaction-advection-diffusion equations”, Journal of Mathematical Analysis and Applications, 405:1 (2013), 90–103 | DOI | MR | Zbl
[7] Zarnitsina V. I., Ataullakhanov F. I., Lobanov A. I., Morozova O. L., “Dynamics of spatially nonuniform patterning in the model of blood coagulation”, Chaos, 11:1 (2001), 57–70 | DOI | Zbl
[8] Aliev R. R., Panfilov A. V., “A simple two-variable model of cardiac excitation”, Chaos, Solitons and Fractals, 7:3 (1996), 293–301 | DOI
[9] Vasil'eva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnikh vozmuchenii, Vysh. shkola, M., 1990 (in Russian) | MR
[10] Al'shin A. B., Al'shina E. A., Kalitkin N. N., Koryagina A. B., “Rosenbrock schemes with complex coefficients for stiff and differential algebraic systems”, Computational Mathematics and Mathematical Physics, 46:8 (2006), 1320–1340 | DOI | MR