Asymptotic approximation of the stationary solution with internal layer for FitzHugh--Nagumo system
Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 5, pp. 559-567.

Voir la notice de l'article provenant de la source Math-Net.Ru

Creating adequate mathematical models of processes in living nature is an important task of modern biophysics. Blood clotting, nerve impulse propagation, reduction of the heart muscle, the pattern-formation in nature are auto-wave processes. FitzHugh–Nagumo system of equations is used to describe the auto-wave processes in active media. Such math problems are usually solved by numerical methods. The use of resource-intensive algorithms is required in the case of auto-wave solutions with sharp gradients. Therefore, it is appropriate to use the analytical methods for this type of problems. In this paper, the asymptotic method of contrast structures theory is used to obtain an approximate solution of a singularly perturbed system of FitzHugh–Nagumo type. The method allows to reduce the non-linear system of equations to a number of problems that can be solved analytically or with a stable numerical algorithm. This study presents the asymptotic approximation of a stationary auto-wave solution of the considered system. Additionally, this paper provides a formula that specifies the location of internal transition layers. The results were compared with the numerical solution. The application of contrast structures theory to the study of active media models can be used for analytical studies of other such systems, improving existing models and increasing the efficiency of the numerical calculations.
Keywords: asymptotic approximation, small parameter, inner transition layer, activator-inhibitor system.
Mots-clés : singular perturbation
@article{MAIS_2016_23_5_a4,
     author = {A. A. Mel'nikova and R. L. Argun},
     title = {Asymptotic approximation of the stationary solution with internal layer for {FitzHugh--Nagumo} system},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {559--567},
     publisher = {mathdoc},
     volume = {23},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a4/}
}
TY  - JOUR
AU  - A. A. Mel'nikova
AU  - R. L. Argun
TI  - Asymptotic approximation of the stationary solution with internal layer for FitzHugh--Nagumo system
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2016
SP  - 559
EP  - 567
VL  - 23
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a4/
LA  - ru
ID  - MAIS_2016_23_5_a4
ER  - 
%0 Journal Article
%A A. A. Mel'nikova
%A R. L. Argun
%T Asymptotic approximation of the stationary solution with internal layer for FitzHugh--Nagumo system
%J Modelirovanie i analiz informacionnyh sistem
%D 2016
%P 559-567
%V 23
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a4/
%G ru
%F MAIS_2016_23_5_a4
A. A. Mel'nikova; R. L. Argun. Asymptotic approximation of the stationary solution with internal layer for FitzHugh--Nagumo system. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 5, pp. 559-567. http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a4/

[1] Butuzov V. F., Levashova N. T., Mel'nikova A. A., “Steplike contrast structure in a singularly perturbed system of equations with different powers of small parameter”, Comput. Math. Math. Phys., 52:11 (2012), 1526–1546 | DOI | MR | Zbl

[2] Sidorova A. E., Levashova N. T., Mel'nikova A. A., Yakovenko L. V., “A model of a human dominated urban ecosystem as an active medium”, Biophysics, 60:3 (2015), 466–473 | DOI | MR

[3] FitzHugh R., “Impulses and physiological states in theoretical model of nerve membrane”, Biophys. J., 1:1 (1961), 445–466 | DOI

[4] Murray J., Mathematical Biology II: Spatial Models and Biomedical Applications, Springer-Verlag, New York, 2003 | MR

[5] Comput. Math. Math. Phys., 53:3 (2013), 273–283 | DOI | DOI | MR | Zbl

[6] Nefedov N. N., Recke L., Schneider K. R., “Existence and asymptotic stability of periodic solutions with an interior layer of reaction-advection-diffusion equations”, Journal of Mathematical Analysis and Applications, 405:1 (2013), 90–103 | DOI | MR | Zbl

[7] Zarnitsina V. I., Ataullakhanov F. I., Lobanov A. I., Morozova O. L., “Dynamics of spatially nonuniform patterning in the model of blood coagulation”, Chaos, 11:1 (2001), 57–70 | DOI | Zbl

[8] Aliev R. R., Panfilov A. V., “A simple two-variable model of cardiac excitation”, Chaos, Solitons and Fractals, 7:3 (1996), 293–301 | DOI

[9] Vasil'eva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnikh vozmuchenii, Vysh. shkola, M., 1990 (in Russian) | MR

[10] Al'shin A. B., Al'shina E. A., Kalitkin N. N., Koryagina A. B., “Rosenbrock schemes with complex coefficients for stiff and differential algebraic systems”, Computational Mathematics and Mathematical Physics, 46:8 (2006), 1320–1340 | DOI | MR