Two wave interactions in a Fermi--Pasta--Ulam model
Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 5, pp. 548-558.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to the dynamic properties of the solutions of boundary value problems associated with the classical system of Fermi–Pasta–Ulam (FPU). We study this problem in infinite-dimensional case, when a countable number of roots of characteristic equations tend to an imaginary axis. Under these conditions, we built a special non-linear partial differential equation, which plays the role of a quasinormal form, i.e, it defines the dynamics of the original boundary value problem with the initial conditions in a sufficiently small neighborhood of the equilibrium state. The modified Korteweg–de Vries (KdV) equation and the Korteweg–de Vries–Burgers (KdVB) one are quasi-normal forms depending on the parameter values. Under some additional assumptions, we apply the procedure of renormalization to the obtained boundary value problems. This procedure leads to an infinite-dimensional system of ordinary differential equations. We describe a method of folding this system in the special boundary value problem, which is an analogue of the normal form. The main result is that the analytical methods of nonlinear dynamics explored the interaction of waves moving in different directions, in the problem of the FPU. It was shown that waves influence on each other is asymptotically small and does not change the shape of waves, contributing only a shift in their speed, which does not change over time.
Keywords: Fermi–Pasta–Ulam model, generalized KdV equation, boundary value problem.
Mots-clés : quasinormal form
@article{MAIS_2016_23_5_a3,
     author = {S. D. Glyzin and S. A. Kashchenko and A. O. Tolbey},
     title = {Two wave interactions in a {Fermi--Pasta--Ulam} model},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {548--558},
     publisher = {mathdoc},
     volume = {23},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a3/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - S. A. Kashchenko
AU  - A. O. Tolbey
TI  - Two wave interactions in a Fermi--Pasta--Ulam model
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2016
SP  - 548
EP  - 558
VL  - 23
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a3/
LA  - ru
ID  - MAIS_2016_23_5_a3
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A S. A. Kashchenko
%A A. O. Tolbey
%T Two wave interactions in a Fermi--Pasta--Ulam model
%J Modelirovanie i analiz informacionnyh sistem
%D 2016
%P 548-558
%V 23
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a3/
%G ru
%F MAIS_2016_23_5_a3
S. D. Glyzin; S. A. Kashchenko; A. O. Tolbey. Two wave interactions in a Fermi--Pasta--Ulam model. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 5, pp. 548-558. http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a3/

[1] Russel Scott J., “Report of waves”, Report of the 14-th. Meeting of the British Association for the Advancement of Science, London, 1844, 311–390

[2] Fermi E., Pasta J. R., Ulam S., Studies of Nonlinear Problems, Report LA-1940, Alamos Scientific Laboratory, 1955

[3] Porter M. A., Zabusky N. J., Hu B., Campbell D. K., “Fermi, Pasta, Ulam and the Birth of Experimental Mathematics”, American Scientist, 97:3 (2009), 214–221 | DOI

[4] Dauxois T., Peyrard M., Ruffo S., The Fermi–Pasta–Ulam “numerical experiment”: history and pedagogical perspectives, 22 Mar 2005, arXiv: nlin/0501053v2 [nlin.PS] | MR

[5] Genta T., Giorgilli A., Paleari S., Penati T., “Packets of resonant modes in the Fermi-Pasta-Ulam system”, Physics Letters A, 376 (2012), 2038–2044 | DOI | Zbl

[6] Kudryashov N. A., “Fermi-Pasta-Ulam Model and Higher-Order Nonlinear Evolution Equations”, Vestnik natsionalnogo issledovatelskogo yadernogo universiteta “MIFI”, 5:1 (2016), 3–22 (in Russian)

[7] Kudryashov N. A., Analytical theory of nonlinear differential equations, Institute of Computer Science, M.–Izhevsk, 2004, 360 pp. (in Russian)

[8] Gardner C. S., Greene J. M., Kruskal M. D., Miura R. M., Phys. Rev. Lett., 19 (1967), 1095–1097 | DOI

[9] Ablowitz M. J., Clarkson P. A., Solitons Nonlinear Evolution Equations and Inverse Scattering, Cambridge university press, 1991 | MR | Zbl

[10] Kudryashov N. A., “Refinement of the Korteweg–de Vries equation from the Fermi–Pasta–Ulam model”, Phys. Lett. A, 279 (2015), 2610–2614 | DOI | MR

[11] Kudryashov N. A., “From the Fermi–Pasta–Ulam model”, Reports on mathematical Physics, 2015 (to appear)

[12] Polyanin A. D., Zaitsev V. F., Handbook of nonlinear partial differential equations, Second Edition, Chapman and Hall/CRC, Boca Raton, 2011, 520 pp. | MR

[13] Volkov A. K., Kudryashov N. A., “Nonlinear waves described by a fifth-order equation derived from the Fermi–Pasta–Ulam system”, Comput. Math. Math. Phys., 56:4 (2016), 680–687 | DOI | DOI | MR | Zbl

[14] Kudryashov N. A., Ryabov P. N., Sinelshchikov D. I., “Nonlinear waves in media with fifth order dispersion”, Phys. Lett. A, 375 (2011), 2051–2055 | DOI | MR | Zbl

[15] Kashchenko S. A., “Normal form for the KdV-Burgers Equation”, Doklady Mathematics, 93:3 (2016), 331 | DOI | Zbl

[16] Kashchenko S. A., “On the quasi-normal forms for parabolic equations with small diffusion”, Reports Academy of Sciences of the USSR, 299 (1988), 1049–1053 | MR

[17] Kaschenko S.A., “Normalization in the systems with small diffusion”, Int. J. of Bifurcations and chaos, 6:7 (1996), 1093–1109 | DOI | MR | Zbl

[18] Kashchenko I. S. and Kashchenko S. A., “Quasi-Normal Forms of Two-Component Singularly Perturbed Systems”, Doklady Mathematics, 86:3 (2012), 865 | DOI | MR | Zbl

[19] Kashchenko I. S., “Multistability in Nonlinear Parabolic Systems with Low Diffusion”, Doklady Mathematics, 82:3 (2010), 878 | DOI | MR | MR | Zbl

[20] Ablowitz M. J., Segur H., Solitons and the Inverse Scattering Transform, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1981, 425 pp. | MR | Zbl

[21] Dodd R. K., Eilbeck J. C., Gibbon J. D., Morris H. C., Solitons and Nonlinear Wave Equations, Academic Press, London et al., 1982, 630 pp. | MR | Zbl

[22] Newell A. C., Solitons in Mathematics and Physics, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1985, 260 pp. | MR

[23] Zabusky N. J., Kruskal M. D., “Interaction of “solitons” in a collisionless plasma and the recurrence of initial states”, Phys Rev. Lett., 15 (1965), 240–243 | DOI | Zbl

[24] Kudryashov N. A., Methods of nonlinear mathematical physics, Dolgoprudnyy, Izdatel'skiy dom “Intellekt”, 2010, 360 pp. (in Russian)

[25] Korteweg D. J., de Vries G., “On the change of form of long waves advancing in a rectangular canal and on a new tipe of long stationary waves”, Phil. Mag., 39 (1895), 422–443 | DOI | MR

[26] Burgers J. M., “A mathematical model illustrating the theory of turbulence”, Adv. Appl. Mech., 1 (1948), 171–199 | DOI | MR

[27] Rabinovich R. S., Trubetskov D. I., Introduction in the Theory of Oscillations and Waves, RCD, Izhevsk, 2000, 560 pp. (in Russian)

[28] Kudryashov N. A., “On "new travelling wave solutions" of the KdV and the KdV-Burgers equations”, Commun. Nonlinear Sci. Numer. Simul., 14:5 (2009), 1891–1900 | DOI | MR | Zbl

[29] Kudryashov N. A., “Exact soliton solutions of the generalized evolution equation of wave dynamics”, Journal of Applied Mathematics and Mechanics, 52:3 (1988), 361–365 | DOI | MR

[30] Kudryashov N. A., “One method for finding exact solutions of nonlinear differential equations”, Communications in Nonlinear Science and Numerical, 17 (2012), 2248–2253 | DOI | MR | Zbl

[31] Kudryashov N. A., “Painleve analysis and exact solutions of the Korteweg–de Vries equation with a source”, Appl. Math. Lett., 41 (2015), 41–45 | DOI | MR | Zbl

[32] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Autowave processes in continual chains of unidirectionally coupled oscillators”, Proc. Steklov Inst. Math., 285 (2014), 81–98 | DOI | MR | Zbl

[33] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Buffering effect in continuous chains of unidirectionally coupled generators”, Theoret. and Math. Phys., 181:2 (2014), 1349–1366 | DOI | DOI | MR | Zbl