Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2016_23_5_a3, author = {S. D. Glyzin and S. A. Kashchenko and A. O. Tolbey}, title = {Two wave interactions in a {Fermi--Pasta--Ulam} model}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {548--558}, publisher = {mathdoc}, volume = {23}, number = {5}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a3/} }
TY - JOUR AU - S. D. Glyzin AU - S. A. Kashchenko AU - A. O. Tolbey TI - Two wave interactions in a Fermi--Pasta--Ulam model JO - Modelirovanie i analiz informacionnyh sistem PY - 2016 SP - 548 EP - 558 VL - 23 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a3/ LA - ru ID - MAIS_2016_23_5_a3 ER -
S. D. Glyzin; S. A. Kashchenko; A. O. Tolbey. Two wave interactions in a Fermi--Pasta--Ulam model. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 5, pp. 548-558. http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a3/
[1] Russel Scott J., “Report of waves”, Report of the 14-th. Meeting of the British Association for the Advancement of Science, London, 1844, 311–390
[2] Fermi E., Pasta J. R., Ulam S., Studies of Nonlinear Problems, Report LA-1940, Alamos Scientific Laboratory, 1955
[3] Porter M. A., Zabusky N. J., Hu B., Campbell D. K., “Fermi, Pasta, Ulam and the Birth of Experimental Mathematics”, American Scientist, 97:3 (2009), 214–221 | DOI
[4] Dauxois T., Peyrard M., Ruffo S., The Fermi–Pasta–Ulam “numerical experiment”: history and pedagogical perspectives, 22 Mar 2005, arXiv: nlin/0501053v2 [nlin.PS] | MR
[5] Genta T., Giorgilli A., Paleari S., Penati T., “Packets of resonant modes in the Fermi-Pasta-Ulam system”, Physics Letters A, 376 (2012), 2038–2044 | DOI | Zbl
[6] Kudryashov N. A., “Fermi-Pasta-Ulam Model and Higher-Order Nonlinear Evolution Equations”, Vestnik natsionalnogo issledovatelskogo yadernogo universiteta “MIFI”, 5:1 (2016), 3–22 (in Russian)
[7] Kudryashov N. A., Analytical theory of nonlinear differential equations, Institute of Computer Science, M.–Izhevsk, 2004, 360 pp. (in Russian)
[8] Gardner C. S., Greene J. M., Kruskal M. D., Miura R. M., Phys. Rev. Lett., 19 (1967), 1095–1097 | DOI
[9] Ablowitz M. J., Clarkson P. A., Solitons Nonlinear Evolution Equations and Inverse Scattering, Cambridge university press, 1991 | MR | Zbl
[10] Kudryashov N. A., “Refinement of the Korteweg–de Vries equation from the Fermi–Pasta–Ulam model”, Phys. Lett. A, 279 (2015), 2610–2614 | DOI | MR
[11] Kudryashov N. A., “From the Fermi–Pasta–Ulam model”, Reports on mathematical Physics, 2015 (to appear)
[12] Polyanin A. D., Zaitsev V. F., Handbook of nonlinear partial differential equations, Second Edition, Chapman and Hall/CRC, Boca Raton, 2011, 520 pp. | MR
[13] Volkov A. K., Kudryashov N. A., “Nonlinear waves described by a fifth-order equation derived from the Fermi–Pasta–Ulam system”, Comput. Math. Math. Phys., 56:4 (2016), 680–687 | DOI | DOI | MR | Zbl
[14] Kudryashov N. A., Ryabov P. N., Sinelshchikov D. I., “Nonlinear waves in media with fifth order dispersion”, Phys. Lett. A, 375 (2011), 2051–2055 | DOI | MR | Zbl
[15] Kashchenko S. A., “Normal form for the KdV-Burgers Equation”, Doklady Mathematics, 93:3 (2016), 331 | DOI | Zbl
[16] Kashchenko S. A., “On the quasi-normal forms for parabolic equations with small diffusion”, Reports Academy of Sciences of the USSR, 299 (1988), 1049–1053 | MR
[17] Kaschenko S.A., “Normalization in the systems with small diffusion”, Int. J. of Bifurcations and chaos, 6:7 (1996), 1093–1109 | DOI | MR | Zbl
[18] Kashchenko I. S. and Kashchenko S. A., “Quasi-Normal Forms of Two-Component Singularly Perturbed Systems”, Doklady Mathematics, 86:3 (2012), 865 | DOI | MR | Zbl
[19] Kashchenko I. S., “Multistability in Nonlinear Parabolic Systems with Low Diffusion”, Doklady Mathematics, 82:3 (2010), 878 | DOI | MR | MR | Zbl
[20] Ablowitz M. J., Segur H., Solitons and the Inverse Scattering Transform, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1981, 425 pp. | MR | Zbl
[21] Dodd R. K., Eilbeck J. C., Gibbon J. D., Morris H. C., Solitons and Nonlinear Wave Equations, Academic Press, London et al., 1982, 630 pp. | MR | Zbl
[22] Newell A. C., Solitons in Mathematics and Physics, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1985, 260 pp. | MR
[23] Zabusky N. J., Kruskal M. D., “Interaction of “solitons” in a collisionless plasma and the recurrence of initial states”, Phys Rev. Lett., 15 (1965), 240–243 | DOI | Zbl
[24] Kudryashov N. A., Methods of nonlinear mathematical physics, Dolgoprudnyy, Izdatel'skiy dom “Intellekt”, 2010, 360 pp. (in Russian)
[25] Korteweg D. J., de Vries G., “On the change of form of long waves advancing in a rectangular canal and on a new tipe of long stationary waves”, Phil. Mag., 39 (1895), 422–443 | DOI | MR
[26] Burgers J. M., “A mathematical model illustrating the theory of turbulence”, Adv. Appl. Mech., 1 (1948), 171–199 | DOI | MR
[27] Rabinovich R. S., Trubetskov D. I., Introduction in the Theory of Oscillations and Waves, RCD, Izhevsk, 2000, 560 pp. (in Russian)
[28] Kudryashov N. A., “On "new travelling wave solutions" of the KdV and the KdV-Burgers equations”, Commun. Nonlinear Sci. Numer. Simul., 14:5 (2009), 1891–1900 | DOI | MR | Zbl
[29] Kudryashov N. A., “Exact soliton solutions of the generalized evolution equation of wave dynamics”, Journal of Applied Mathematics and Mechanics, 52:3 (1988), 361–365 | DOI | MR
[30] Kudryashov N. A., “One method for finding exact solutions of nonlinear differential equations”, Communications in Nonlinear Science and Numerical, 17 (2012), 2248–2253 | DOI | MR | Zbl
[31] Kudryashov N. A., “Painleve analysis and exact solutions of the Korteweg–de Vries equation with a source”, Appl. Math. Lett., 41 (2015), 41–45 | DOI | MR | Zbl
[32] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Autowave processes in continual chains of unidirectionally coupled oscillators”, Proc. Steklov Inst. Math., 285 (2014), 81–98 | DOI | MR | Zbl
[33] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Buffering effect in continuous chains of unidirectionally coupled generators”, Theoret. and Math. Phys., 181:2 (2014), 1349–1366 | DOI | DOI | MR | Zbl