FDTD method for piecewise homogeneous dielectric media
Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 5, pp. 539-547.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a numerical solution of Maxwell's curl equations for piecewise uniform dielectric medium by the example of a one-dimensional problem. For obtaining the second order accuracy, the electric field grid node is placed into the permittivity discontinuity point of the medium. If the dielectric permittivity is large, the problem becomes singularly perturbed and a contrast structure appears. We propose a piecewise quasi-uniform mesh which resolves all characteristic solution parts of the problem (regular part, boundary layer and transition zone placed between them) in detail. The features of the mesh are discussed.
Keywords: finite-difference time-domain (FDTD) method, Yee’s scheme, dielectric interfaces, layered media, quasi-uniform meshes.
@article{MAIS_2016_23_5_a2,
     author = {Zh. O. Dombrovskaya},
     title = {FDTD method for piecewise homogeneous dielectric media},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {539--547},
     publisher = {mathdoc},
     volume = {23},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a2/}
}
TY  - JOUR
AU  - Zh. O. Dombrovskaya
TI  - FDTD method for piecewise homogeneous dielectric media
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2016
SP  - 539
EP  - 547
VL  - 23
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a2/
LA  - ru
ID  - MAIS_2016_23_5_a2
ER  - 
%0 Journal Article
%A Zh. O. Dombrovskaya
%T FDTD method for piecewise homogeneous dielectric media
%J Modelirovanie i analiz informacionnyh sistem
%D 2016
%P 539-547
%V 23
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a2/
%G ru
%F MAIS_2016_23_5_a2
Zh. O. Dombrovskaya. FDTD method for piecewise homogeneous dielectric media. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 5, pp. 539-547. http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a2/

[1] Taflove A., Hagness S. C., Computational Electrodynamics: the Finite-Difference Time-Domain Method, 3rd ed., Artech House, 2005 | MR

[2] Taflove A., Johnson S. G., Oskooi A., Advances in FDTD Computational Electromagnetics: Photonics and Nanotechnology, Artech House, 2013

[3] Yee K. S., “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media”, IEEE Trans. Antennas Propag., 14:3 (1966), 302–307 | DOI | Zbl

[4] Monk P., “Convergence analysis of Yee's scheme on non-uniform grids”, SIAM Journal of Numerical Analysis, 31:2 (1994), 393–412 | DOI | MR | Zbl

[5] Li J., Shields S., “Superconvergence analysis of Yee scheme for metamaterial Maxwell's equations on non-uniform rectangular meshes”, Numer. Math., 2015, 1–41 | DOI | MR

[6] Chu Q.X., Ding H., “Second-order accuarate FDTD equations at magnetic media interfaces”, IEEE Trans. Magn., 27 (2006), 3141–3143 | DOI

[7] Chu Q.X., Ding H., “Second-order accuarate FDTD equations at dielectric interfaces”, Microwave Opt. Techn. Lett., 49:12 (2007), 3007–3011 | DOI

[8] Bakhvalov N.S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 841–859 | Zbl

[9] Shishkin G.I., “Raznostnye approksimatsii singuliarno vozmushchennoi kraevoi zadachi dlia kvazilineinykh ellipticheskikh uravnenii, vyrozhdaushchikhsia v uravnenie pervogo poriadka”, Zh. vychisl. matem. i matem. fiz., 32:4 (1992), 550–566 (in Russian) | MR | Zbl

[10] Sun G., Stynes M., “Finite element methods on piecewise equidistant meshes for interior turning point problems”, Numer. Algorithms, 8:1 (1994), 111–129 | DOI | MR | Zbl

[11] Liseikin V.D., Layer resolving grids and transformations for singular perturbation problems, VSP BV, 2001

[12] Miller J.J.H., O'Riordan E., Shishkin G.I., Fitted numerical methods for singular perturbation problems. Error estimates in the maximum norm for linear problems in one and two dimensions, World Scientific, 1996 | MR | Zbl

[13] Belov A.A, Kalitkin N.N., “Numerical simulations of boundary layer problems”, Mathematical Models and Computer Simulations, 8:4 (2016), 341–347 | DOI | MR | Zbl

[14] Belov A.A, Kalitkin N.N., “Grid methods for boundary layer problem”, Bulletin of the Russian Academy of Sciences: Physics, 79:12 (2015), 1448–1452 | DOI | DOI

[15] Belov A. A., “Programmy SuFaReC dlia sverkhbystrogo rascheta ellipticheskikh uravnenii v priamougolnoi oblasti”, Preprinty IPM im. M.V. Keldysha, 2015, no. 44, 12 pp. (in Russian) http://library.keldysh.ru/preprint.asp?id=2015-44

[16] Kalitkin N. N., Belov A. A., “Analogue of the richardson method for logarithmically converging time marching”, Doklady Mathematics, 88:2 (2013), 596–600 | DOI | DOI | MR | Zbl

[17] Belov A. A., Kalitkin N. N., “Evolutionary factorization and superfast relaxation count”, Mathematical Models and Computer Simulations, 7:2 (2015), 103–116 | DOI | MR | Zbl

[18] Mur G., “Absorbing boundary conditions for the finite-difference approximation ot the time-domain electromagnetic-field equations”, IEEE Trans. Electromagn. Comp., EMC-23:4 (1981), 377–382 | DOI

[19] Bogolyubov A.N., Butkarev I.A., Dementieva Yu.S., “Research of propagation of electromagnetic pulses through photonic crystal structures”, Moscow University physics bulletin, 65:6 (2010), 425–431 | DOI

[20] Bogolubov A. N., Belokopytov G. V., Dombrovskaya Z. O., “Modeling of spectral dependences for 2D photonic crystal waveguide systems”, Moscow University physics bulletin, 68:6 (2013), 344–350 | DOI | MR

[21] Dombrovskaya Zh.O., Bogolyubov A.N., “Analiz tochnosti i skhodimosti odnomernoi skhemy Ie metodom sguscheniya setok”, Uchenye zapiski fizicheskogo fakulteta MGU, 2016, no. 3, 163112-1–163112-3 http://uzmu.phys.msu.ru/file/2016/3/163112.pdf

[22] Richardson L. F., Gaunt J. A., “The deferred approach to the limit”, Phil. Trans. A, 226 (1927), 229–349 | DOI