Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2016_23_5_a2, author = {Zh. O. Dombrovskaya}, title = {FDTD method for piecewise homogeneous dielectric media}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {539--547}, publisher = {mathdoc}, volume = {23}, number = {5}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a2/} }
Zh. O. Dombrovskaya. FDTD method for piecewise homogeneous dielectric media. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 5, pp. 539-547. http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a2/
[1] Taflove A., Hagness S. C., Computational Electrodynamics: the Finite-Difference Time-Domain Method, 3rd ed., Artech House, 2005 | MR
[2] Taflove A., Johnson S. G., Oskooi A., Advances in FDTD Computational Electromagnetics: Photonics and Nanotechnology, Artech House, 2013
[3] Yee K. S., “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media”, IEEE Trans. Antennas Propag., 14:3 (1966), 302–307 | DOI | Zbl
[4] Monk P., “Convergence analysis of Yee's scheme on non-uniform grids”, SIAM Journal of Numerical Analysis, 31:2 (1994), 393–412 | DOI | MR | Zbl
[5] Li J., Shields S., “Superconvergence analysis of Yee scheme for metamaterial Maxwell's equations on non-uniform rectangular meshes”, Numer. Math., 2015, 1–41 | DOI | MR
[6] Chu Q.X., Ding H., “Second-order accuarate FDTD equations at magnetic media interfaces”, IEEE Trans. Magn., 27 (2006), 3141–3143 | DOI
[7] Chu Q.X., Ding H., “Second-order accuarate FDTD equations at dielectric interfaces”, Microwave Opt. Techn. Lett., 49:12 (2007), 3007–3011 | DOI
[8] Bakhvalov N.S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 841–859 | Zbl
[9] Shishkin G.I., “Raznostnye approksimatsii singuliarno vozmushchennoi kraevoi zadachi dlia kvazilineinykh ellipticheskikh uravnenii, vyrozhdaushchikhsia v uravnenie pervogo poriadka”, Zh. vychisl. matem. i matem. fiz., 32:4 (1992), 550–566 (in Russian) | MR | Zbl
[10] Sun G., Stynes M., “Finite element methods on piecewise equidistant meshes for interior turning point problems”, Numer. Algorithms, 8:1 (1994), 111–129 | DOI | MR | Zbl
[11] Liseikin V.D., Layer resolving grids and transformations for singular perturbation problems, VSP BV, 2001
[12] Miller J.J.H., O'Riordan E., Shishkin G.I., Fitted numerical methods for singular perturbation problems. Error estimates in the maximum norm for linear problems in one and two dimensions, World Scientific, 1996 | MR | Zbl
[13] Belov A.A, Kalitkin N.N., “Numerical simulations of boundary layer problems”, Mathematical Models and Computer Simulations, 8:4 (2016), 341–347 | DOI | MR | Zbl
[14] Belov A.A, Kalitkin N.N., “Grid methods for boundary layer problem”, Bulletin of the Russian Academy of Sciences: Physics, 79:12 (2015), 1448–1452 | DOI | DOI
[15] Belov A. A., “Programmy SuFaReC dlia sverkhbystrogo rascheta ellipticheskikh uravnenii v priamougolnoi oblasti”, Preprinty IPM im. M.V. Keldysha, 2015, no. 44, 12 pp. (in Russian) http://library.keldysh.ru/preprint.asp?id=2015-44
[16] Kalitkin N. N., Belov A. A., “Analogue of the richardson method for logarithmically converging time marching”, Doklady Mathematics, 88:2 (2013), 596–600 | DOI | DOI | MR | Zbl
[17] Belov A. A., Kalitkin N. N., “Evolutionary factorization and superfast relaxation count”, Mathematical Models and Computer Simulations, 7:2 (2015), 103–116 | DOI | MR | Zbl
[18] Mur G., “Absorbing boundary conditions for the finite-difference approximation ot the time-domain electromagnetic-field equations”, IEEE Trans. Electromagn. Comp., EMC-23:4 (1981), 377–382 | DOI
[19] Bogolyubov A.N., Butkarev I.A., Dementieva Yu.S., “Research of propagation of electromagnetic pulses through photonic crystal structures”, Moscow University physics bulletin, 65:6 (2010), 425–431 | DOI
[20] Bogolubov A. N., Belokopytov G. V., Dombrovskaya Z. O., “Modeling of spectral dependences for 2D photonic crystal waveguide systems”, Moscow University physics bulletin, 68:6 (2013), 344–350 | DOI | MR
[21] Dombrovskaya Zh.O., Bogolyubov A.N., “Analiz tochnosti i skhodimosti odnomernoi skhemy Ie metodom sguscheniya setok”, Uchenye zapiski fizicheskogo fakulteta MGU, 2016, no. 3, 163112-1–163112-3 http://uzmu.phys.msu.ru/file/2016/3/163112.pdf
[22] Richardson L. F., Gaunt J. A., “The deferred approach to the limit”, Phil. Trans. A, 226 (1927), 229–349 | DOI