Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2016_23_5_a11, author = {P. N. Nesterov}, title = {Asymptotic integration of a certain second-order linear delay differential equation}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {635--656}, publisher = {mathdoc}, volume = {23}, number = {5}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a11/} }
TY - JOUR AU - P. N. Nesterov TI - Asymptotic integration of a certain second-order linear delay differential equation JO - Modelirovanie i analiz informacionnyh sistem PY - 2016 SP - 635 EP - 656 VL - 23 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a11/ LA - ru ID - MAIS_2016_23_5_a11 ER -
P. N. Nesterov. Asymptotic integration of a certain second-order linear delay differential equation. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 5, pp. 635-656. http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a11/
[1] Bellman R., Stability theory of differential equations, McGraw-Hill, New York, 1953 | MR | Zbl
[2] Burd V. Sh., Karakulin V. A., “On the asymptotic integration of systems of linear differential equations with oscillatory decreasing coefficients”, Math. Notes, 64:5 (1998), 571–578 | DOI | DOI | MR | Zbl
[3] Its A. R., “The asymptotic behavior of solutions to the radial Schrödinger equation with oscillating potential at energy zero”, Selecta Math. Soviet., 3 (1984), 291–300 | MR | Zbl
[4] Coddington E. A., Levinson N., Theory of ordinary differential equations, McGraw-Hill, New York, 1955 | MR | Zbl
[5] Kondrat'ev V. A., “Jelementarnyj vyvod neobhodimogo i dostatochnogo uslovija nekoleblemosti reshenij linejnogo differencialnogo uravnenija vtorogo porjadka”, UMN, 12:3(75) (1957), 159–160 (in Russian) | MR | Zbl
[6] Levin A. Yu., “Integralnyj kriterij neoscilljacionnosti dlja uravnenija $\ddot{x} + q(t)x = 0$”, UMN, 20:2(122) (1965), 244–246 (in Russian) | MR
[7] Levin A. J., “Behavior of the solutions of the equation $\ddot{x}+p(t)\dot{x}+q(t)x = 0$ in the nonoscillatory case”, Mathematics of the USSR — Sbornik, 4:1 (1968), 33–55 | DOI | MR | Zbl
[8] Nesterov P. N., “Construction of the asymptotics of the solutions of the one-dimensional Schrödinger equation with rapidly oscillating potential”, Math. Notes, 80:2 (2006), 233–243 | DOI | DOI | MR | Zbl
[9] Nesterov P. N., “Averaging method in the asymptotic integration problem for systems with oscillatory-decreasing coefficients”, Differ. Equ., 43:6 (2007), 745–756 | DOI | MR | Zbl
[10] Agarwal R. P., Bohner M., Li W.-T., Nonoscillation and oscillation: theory for functional differential equations, Dekker, New York, 2004 | MR | Zbl
[11] Berezansky L., Braverman E., “Some oscillation problems for a second order linear delay differential equation”, J. Math. Anal. Appl., 220:2 (1998), 719–740 | DOI | MR | Zbl
[12] Bodine S., Lutz D. A., “Asymptotic analysis of solutions of a radial Schrödinger equation with oscillating potential”, Math. Nachr., 279:15 (2006), 1641–1663 | DOI | MR | Zbl
[13] Burd V., Nesterov P., “Asymptotic behaviour of solutions of the difference Schroödinger equation”, J. Difference Equ. Appl., 17:11 (2011), 1555–1579 | DOI | MR | Zbl
[14] Cassell J. S., “The asymptotic behaviour of a class of linear oscillators”, Quart. J. Math., 32:3 (1981), 287–302 | DOI | MR | Zbl
[15] Cassell J. S., “The asymptotic integration of some oscillatory differential equations”, Quart. J. Math., 33:2 (1982), 281–296 | DOI | MR | Zbl
[16] Eastham M. S. P., The asymptotic solution of linear differential systems, Clarendon Press, Oxford, 1989 | MR | Zbl
[17] Erbe L. H., Kong Q., Zhang B. G., Oscillation theory for functional differential equations, Dekker, New York, 1995 | MR
[18] Ladde G. S., Lakshmikantham V., Zhang B. G., Oscillation theory of differential equations with deviating arguments, Dekker, New York–Basel, 1987 | MR
[19] Nesterov P., “Asymptotic integration of functional differential systems with oscillatory decreasing coefficients: a center manifold approach”, Electron. J. Qual. Theory Differ. Equ., 2016, no. 33, 1–43 | DOI | MR
[20] Opluštil Z., Šremr J., “Some oscillation criteria for the second-order linear delay differential equation”, Math. Bohem., 136:2 (2011), 195–204 | MR | Zbl
[21] Opluštil Z., Šremr J., “Myshkis type oscillation criteria for second-order linear delay differential equations”, Monatsh. Math., 178:1 (2015), 143–161 | DOI | MR | Zbl