Numerical methods of solving Cauchy problems with contrast structures
Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 5, pp. 529-538.

Voir la notice de l'article provenant de la source Math-Net.Ru

Modern numerical methods allowing to solve contrast structure problems in the most efficient way are described. These methods include explicit-implicit Rosenbrock schemes with complex coefficients and fully implicit backward optimal Runge–Kutta schemes. As an integration argument, it is recommended to choose the length of the integral curve arc. This argument provides high reliability of the calculation and sufficiently decreases the complexity of computations for low-order systems. In order to increase the efficiency, we propose an automatic step selection algorithm based on curvature of the integral curve. This algorithm is as efficient as standard algorithms and has sufficiently larger reliability. We show that along with such an automatic step selection it is possible to calculate a posteriori asymptotically precise error estimation. Standard algorithms do not provide such estimations and their actual error quite often exceeds the user-defined tolerance by several orders. The applicability limitations of numerical methods are investigated. In solving superstiff problems, they sometimes do not provide satisfactory results. In such cases, it is recommended to imply approximate analytical methods. Consequently, numerical and analytical methods are complementary.
Keywords: stiff Cauchy problem, contrast structure, automatic step selection, curvature in multidimensional space, Richardson method estimations, singularity diagnostics, solution blow-up.
@article{MAIS_2016_23_5_a1,
     author = {A. A. Belov and N. N. Kalitkin},
     title = {Numerical methods of solving {Cauchy} problems with contrast structures},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {529--538},
     publisher = {mathdoc},
     volume = {23},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a1/}
}
TY  - JOUR
AU  - A. A. Belov
AU  - N. N. Kalitkin
TI  - Numerical methods of solving Cauchy problems with contrast structures
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2016
SP  - 529
EP  - 538
VL  - 23
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a1/
LA  - ru
ID  - MAIS_2016_23_5_a1
ER  - 
%0 Journal Article
%A A. A. Belov
%A N. N. Kalitkin
%T Numerical methods of solving Cauchy problems with contrast structures
%J Modelirovanie i analiz informacionnyh sistem
%D 2016
%P 529-538
%V 23
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a1/
%G ru
%F MAIS_2016_23_5_a1
A. A. Belov; N. N. Kalitkin. Numerical methods of solving Cauchy problems with contrast structures. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 5, pp. 529-538. http://geodesic.mathdoc.fr/item/MAIS_2016_23_5_a1/

[1] Hairer E., Wanner G., Solving ordinary differential equations. Stiff and differential-algebraic problems, Springer-Verlag, Berlin–Heidelberg–New York–London–Paris–Tokyo, 1999

[2] Vasileva A. B., Butuzov V. F., Nefedov N. N., “Kontrastnye struktury v singuliarno vozmushchennykh zadachakh”, Fundamentalnaia i prikladnaia matematika, 4:3 (1998), 799–851 (in Russian) | MR | Zbl

[3] Rosenbrock H. H., “Some general implicit processes for the numerical solution of differential equations”, Comput. J., 5:4 (1963), 329–330 | DOI | MR | Zbl

[4] Shirkov P. D., “Optimalno zatukhaiushchie skhemy s kompleksnymi koeffitsientami dlia zhestkikh ODU”, Matem. Modelirovanie, 4:8 (1992), 47–57 (in Russian) | MR | Zbl

[5] Al'shin A. B., Al'shina E. A., Limonov A. G., “Two-stage complex Rosenbrock schemes for stiff systems”, Comp. Math. and Math. Phys., 49:2 (2009), 261–278 | DOI | MR | Zbl

[6] Kalitkin N. N., Poshivaylo I. P., “Inverse Ls-stable Runge–Kutta schemes”, Doklady Math., 85:1 (2012), 139–143 | DOI | MR | Zbl

[7] Kalitkin N. N., Poshivaylo I. P., “Computations with inverse Runge-Kutta schemes”, Math. Models and Comp. Simulations, 6:3 (2014), 272–285 | DOI | MR

[8] Belov A. A., Kalitkin N. N., Poshivaylo I. P., “Geometrically adaptive grids for stiff Cauchy problems”, Doklady Math., 93:1 (2016), 112–116 | DOI | DOI | MR | Zbl

[9] Kalitkin N. N, Alshin A. B., Alshina E. A., Rogov B. V., Vychisleniia na kvaziravnomernykh setkakh, Fizmatlit, M., 2005 (in Russian)

[10] Alshina E. A., Kalitkin N. N., Koryakin P. V., “Diagnosis of singularities of exact solutions by calculation on embedded grids”, Doklady Math., 72:2 (2005), 697–701 | MR | Zbl

[11] Alshina E. A., Kalitkin N. N., Koryakin P. V., “Diagnostics of singularities of exact solutions in computations with error control”, Comp. Math. and Math. Phys., 45:10 (2005), 1769–1779 | MR | Zbl

[12] Belov A. A., “Numerical Detection and Study of Singularities in Solutions of Differential Equations”, Doklady Mathematics, 93:3 (2016), 334–338 | DOI | DOI | MR | Zbl