On algebraic cycles on fibre products of non-isotrivial families of regular surfaces with geometric genus~1
Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 4, pp. 440-465.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\pi_k:X_k\to C\,\,\,(k = 1, 2)$ be a projective family of surfaces (possibly with degenerations) over a smooth projective curve $C$. Assume that the discriminant loci $\Delta_k=\{\delta\in C\,\,\vert\,\,\operatorname{Sing}(X_{k\delta})\neq\varnothing\} \quad (k = 1, 2)$ are disjoint, $h^{2,0}(X_{ks})=1,\quad h^{1,0}(X_{ks}) = 0$ for any smooth fibre $X_{ks}$ and the period map associated with the variation of Hodge structures $R^2\pi'_{k\ast}\mathbb{Q}$ (where $\pi'_k:X'_k\to C\setminus\Delta_k$ is a smooth part of the morphism $\pi_k$), is non-constant. If for generic geometric fibres $X_{1s}$ and $X_{2s}$ the following conditions hold: (i) $b_2(X_{1s})-\operatorname{rank} \operatorname{NS}(X_{1s})$ is an odd integer; (ii) $b_2(X_{1s})-\operatorname{rank}\operatorname{NS}(X_{1s})\neq b_2(X_{2s})-\operatorname{rank} \operatorname{NS}(X_{2s})$, then for any smooth projective model $X$ of the fibre product $X_1\times_CX_2$ the Hodge conjecture on algebraic cycles is true. If, besides, the morphisms $\pi_k$ are smooth, $p_k=b_2(X_{ks}) -\operatorname{rank} \operatorname{NS}(X_{ks}) \,\,\,(k = 1,2)$ are odd prime numbers and $p_1\neq p_2$, then for $X_1\times_CX_2$ and for the fibre square $X_1\times_CX_1$ the Hodge conjecture and the Grothendieck standard conjecture on algebraicity of operators $\ast$ and $\Lambda$ of Hodge theory hold as well. This result yields new examples of smooth projective 5-dimensional varieties satisfying the Hodge and the Grothendieck conjectures, because one can take as smooth fibres of the morphism $\pi_k:X_k\to C$ some $K3$ surfaces, minimal regular surfaces of general type (of Kodaira dimension $\varkappa=2$) with geometric genus $1$ belonging to one of the following types: (a) surfaces with $K^2\leq 2$; (b) surfaces with $3\leq K^2\leq 8$, whose moduli are in the same component of the space of moduli as Todorov surface; (c) surfaces with $K^2 = 3$ with torsion of the Picard group $\mathbb{Z}/3\mathbb{Z}$.
Keywords: Hodge conjecture, standard conjecture, Hodge group, Poincaré cycle.
Mots-clés : fibre product
@article{MAIS_2016_23_4_a4,
     author = {O. V. Nikol'skaya},
     title = {On algebraic cycles on fibre products of non-isotrivial families of regular surfaces with geometric genus~1},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {440--465},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_4_a4/}
}
TY  - JOUR
AU  - O. V. Nikol'skaya
TI  - On algebraic cycles on fibre products of non-isotrivial families of regular surfaces with geometric genus~1
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2016
SP  - 440
EP  - 465
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2016_23_4_a4/
LA  - ru
ID  - MAIS_2016_23_4_a4
ER  - 
%0 Journal Article
%A O. V. Nikol'skaya
%T On algebraic cycles on fibre products of non-isotrivial families of regular surfaces with geometric genus~1
%J Modelirovanie i analiz informacionnyh sistem
%D 2016
%P 440-465
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2016_23_4_a4/
%G ru
%F MAIS_2016_23_4_a4
O. V. Nikol'skaya. On algebraic cycles on fibre products of non-isotrivial families of regular surfaces with geometric genus~1. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 4, pp. 440-465. http://geodesic.mathdoc.fr/item/MAIS_2016_23_4_a4/

[1] Hodge W. V. D., “The topological invariants of algebraic varieties”, Proceedings of International Congress of Mathematicians, 1 (1952), 182–192 | MR | Zbl

[2] Tankeev S. G., “Cycles on simple abelian varieties of prime dimension”, Mathematics of the USSR-Izvestiya, 20:1 (1983), 157–171 | DOI | MR | Zbl

[3] Gordon B. B., “A survey of the Hodge conjecture for Abelian varieties, Appendix in: J.D. Lewis”, A survey of the Hodge conjecture, CRM Monograph Series, 10, Second edition, American Mathematical Society, Providence, RI, 1999, 297–356 | MR

[4] Nikolskaya O. V., “On algebraic cycles on a fibre product of families of K3 surfaces”, Izv. Math., 77:1 (2013), 143–162 | DOI | DOI | MR | Zbl

[5] Nikolskaya O. V., “On the geometry of a smooth model of a fibre product of families of K3 surfaces”, Sbornik: Mathematics, 205:2 (2014), 269–276 | DOI | DOI | MR | Zbl

[6] Nikolskaya O. V., “On algebraic cohomology classes on a smooth model of a fiber product of families of K3 surfaces”, Math. Notes, 96:5 (2014), 745–752 | DOI | DOI | MR | Zbl

[7] Grothendieck A., “Standard conjectures on algebraic cycles”, Algebraic Geometry, International Colloguium (Bombay, 1968), Oxford University Press, London, 1969, 193–199 | MR

[8] Lieberman D. I., “Numerical and homological equivalence of algebraic cycles on Hodge manifolds”, Amer. J. Math., 90:2 (1968), 366–374 | DOI | MR | Zbl

[9] Tankeev S. G., “On the standard conjecture of Lefschetz type for complex projective threefolds. II”, Izv. Math., 75:5 (2011), 1047–1062 | DOI | DOI | MR | Zbl

[10] Charles F., Markman E., “The standard conjectures for holomorphic symplectic varieties deformation equivalent to Hilbert shemes of K3 surfaces”, Compos. Math., 149:3 (2013), 481–494 | DOI | MR | Zbl

[11] Tankeev S. G., “On the standard conjecture for complex 4-dimensional elliptic varieties and compactifications of Neron minimal models”, Izv. Math., 78:1 (2014), 169–200 | DOI | DOI | MR | Zbl

[12] Deligne P., “Travaux de Griffiths”, Séminaire Bourbaki 1969/70, Exposé 376, Benjaminn, New York–Heidelberg, 1971, 213–235 | DOI

[13] Griffiths Ph. A., “Periods of integrals on algebraic manifolds: summary of main results and discussion of open problems”, Bull. Amer. Math. Soc., 76:2 (1970), 228–296 | DOI | MR | MR | Zbl

[14] Griffiths Ph. A., “A transcendental method in algebraic geometry”, Actes du Congrés intérnational des mathématiciens (Nice, 1970), v. 1, 1971, 113–119 | MR | Zbl

[15] Schmid W., “Variation of Hodge structure: the singularities of the period mapping”, Invent. math., 22 (1973), 211–319 | DOI | MR | Zbl

[16] Morrison D. R., “On the moduli of Todorov surfaces”, Algebraic geometry and commutative algebra, In honor of Masayoshi Nagata, Kinokuniya C. Ltd., 1988, 313–356 | DOI | MR

[17] Pignatelli R., “Some (big) irreducible components of the moduli space of minimal surfaces of general type with $p_g=q=1$ and $K^2=4$”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 20:3 (2009), 207–226 | DOI | MR | Zbl

[18] Moonen B., On the Tate and Mumford–Tate conjectures in codimension one for varieties with $h^{2,0}=1$, 21 Apr 2015, 45 pp., arXiv: 1504.05406v2 [math.AG]

[19] Zarhin Yu. G., “Hodge groups of $K3$ surfaces”, Journal für die reine und angewandte Mathematik, 341 (1983), 193–220 | MR

[20] Burbaki N., Gruppy i algebry Li, gl. 1–3, Mir, M., 1976 ; гл. 4–6, 1972; гл. 7–8, 1978 ; French transl.: Bourbaki N., Groupes et algèbres de Lie, Chaps. 1–8, Actualités Sci. Indust., 1285, Hermann, Paris, 1968 ; Actualités Sci. Indust., 1349, 1971; Actualités Sci. Indust., 1337, 1972; Actualités Sci. Indust., 1364, 1975 | MR | MR | MR | Zbl

[21] Mustafin G. A., “Families of algebraic varieties and invariant cycles”, Mathematics of the USSR-Izvestiya, 27:2 (1986), 251–278 | DOI | MR | Zbl

[22] Bourbaki N., Éléments de mathématique. Algèbre. Ch. IX. Formes sesquilineares et formes quadratiques, Hermann, Paris, 1959 | MR

[23] Helgason S., Differential geometry and symmetric spaces, Academic Press, New York–London, 1962 | MR | Zbl

[24] Zarhin Yu. G., “Weights of simple Lie algebras in the cohomology of algebraic varieties”, Math. USSR-Izv., 24:2 (1985), 245–281 | DOI | MR | MR

[25] Tankeev S. G., “Monoidal transformation and conjectures on algebraic cycles”, Izv. Math., 71:3 (2007), 629–655 | DOI | DOI | MR | Zbl

[26] Tankeev S. G., “The arithmetic and geometry of a generic hypersurface section”, Izv. Math., 66:2 (2002), 393–424 | DOI | DOI | MR | Zbl

[27] Kempf G. et al., Toroidal embeddings, v. I, Lecture Notes in Mathematics, 339, Springer-Verlag, Berlin–New York, 1973, 209 pp. | MR | Zbl

[28] Tankeev S. G., “On the standard conjecture for complex Abelian schemes over smooth projective curves”, Izv. Math., 67:3 (2003), 597–635 | DOI | DOI | MR | Zbl

[29] Deligne P., “Théorie de Hodge. II”, Inst. Hautes Études Sci. Publ. Math., 40 (1971), 5–57 | DOI | MR | MR | Zbl

[30] Zucker S., “Hodge theory with degenerating coefficients: $L_2$ cohomology in the Poincaré metric”, Ann. Math. (2), 109:3 (1979), 415–476 | DOI | MR | Zbl

[31] Tankeev S. G., “On the standard conjecture of Lefschetz type for complex projective threefolds”, Izv. Math., 74:1 (2010), 167–187 | DOI | DOI | MR | Zbl

[32] Deligne P., “Théorie de Hodge. III”, Inst. Hautes Études Sci. Publ. Math., 44 (1974), 5–77 | DOI | MR | Zbl

[33] Okamoto M., “On a certain decomposition of 2-dimensional cycles on a product of two algebraic surfaces”, Proceeding of Japan Academy, Series A, 57:6 (1981), 321–325 | DOI | MR | Zbl

[34] Shimura G., “Reduction of algebraic varieties with respect to a discrete valuation of the basic field”, Amer. J. Math., 77:1 (1955), 134–176 | DOI | MR | Zbl

[35] Kleiman S. L., “Algebraic cycles and the Weil conjectures”, Dix exposés sur la cohomologie des schémas, North-Holland, Amsterdam; Masson, Paris, 1968, 359–386 | MR